
Package sml

Allen Leung

May 17, 2018

1 Introduction

The sml package defines a verbatim-like environment called smldisplay for
typesetting Standard ML programs. Like the alltt environment, backslashes
‘\’ and the braces { and } have their usual meaning in smldisplay, so it is pos-
sible to use other macros and commands within the smldisplay environment.
Meta-characters such as #, %, $, _ and ^ are disabled and appears verbatim.

To enter math mode, the user can use \(. . .) or \[. . . \]. But unlike the
alltt environment, the superscripts ^ and subscripts _ characters are available
inside math mode.

The character ’ is interpreted as the beginning of a ML type variable. Type
variables are typeset in italics within the smldisplay environment. For exam-
ple,

\begin{smldisplay}

datatype ’a tree = EMPTY

| NODE of ’a * ’a tree list

\end{smldisplay}

is typeset as follows:

datatype ’a tree = EMPTY

| NODE of ’a * ’a tree list

The environment smlboxeddisplay is similar to smldisplay except that a
boxed is also drawn around the displayed program. For example, if we write:

\begin{smlboxeddisplay}

datatype ’a tree = EMPTY

| NODE of ’a * ’a tree list

\end{smlboxeddisplay}

we get:

datatype ’a tree = EMPTY

| NODE of ’a * ’a tree list

1

1.1 Highlighting keywords

A similar environment, called smldisp, can be used to highlight all SML key-
words. However, math mode and other macros are unavailable in this environ-
ment. For example, in smldisp we can write:

\begin{smldisp}

(* A n-ary tree *)

datatype ’a tree = EMPTY

| NODE of ’a * ’a tree list

(* Flatten a tree as a list in preorder *)

fun flatten(EMPTY) = []

| flatten(NODE(x,children)) = [x] @ List.concat(map flatten children)

\end{smldisp}

and get the following result:
(* A n-ary tree *)

datatype ’a tree = EMPTY

| NODE of ’a * ’a tree list

(* Flatten a tree as a list in preorder *)

fun flatten(EMPTY) = []

| flatten(NODE(x,children)) = [x] @ List.concat(map flatten children)

Note that the keywords “datatype” and “of” have been typeset as datatype
and of. Furthermore, comments are typeset in small italics font.

The following macros control how keywords and comments are typeset in
this environment:

\newcommand{\makeSmlKeyword}[1]{{\bf #1}}

\newcommand{\smlCommentSize}{\small}

\newcommand{\smlCommentFont}{\it}

\newcommand{\BeginSmlComment}{\begingroup\smlCommentSize\smlCommentFont}

\newcommand{\EndSmlComment}{\endgroup}

These can be redefined by the user if necessary.

1.2 Type Variable Translations

It is possible to define type variable translations for smldisplay and smldisp

environments. For example, if we write:

\smlTypeVar{a}{\(\alpha\)}

\smlTypeVar{foo}{\(\underline\beta\)}

\begin{smldisplay}

datatype ’a tree = EMPTY | NODE of ’a * ’a tree list

type ’foo foo = (’foo * ’foo) tree

type ’c seq = ’c list

\end{smldisplay}

we get:

2

datatype α’a tree = EMPTY | NODE of α’a * α’a tree list

type β’foo foo = (β’foo * β’foo) tree

type ’c seq = ’c list

Note that all occurrances of ’a has been translated into α, while all occur-
rances of ’foo has been translated into β.

A type variable translation declared by smlTypeVar is active in its scope
until it is removed by the macro \smlRemoveTypeVar. For example, we can
write:

\smlRemoveTypeVar{foo}

to remove the translation on type variable ’foo.

1.3 \verb-like macros

A \verb-like macro called \sml is available for typesetting short SML program
fragments within running text. For example, we can write the following:

\begin{quotation}

The datatype \sml{’a tree} implements a polymorphic n-ary tree.

The function \sml{val rev : ’a tree -> ’a list} flattens a tree into a list.

\end{quotation}

and obtain:

The datatype α’a tree implements a polymorphic n-ary tree.
The function val rev : α’a tree -> α’a list flattens a tree into
a list.

The macro \sml behaves very much like the smldisplay environment, except
that newlines are not interpreted verbatim.

Similarly, there is a \verb-like macro called \Sml that behaves like the
smldisp environment. For example, writing

\begin{quotation}

The datatype \Sml{’a tree} implements a polymorphic n-ary tree.

The function \Sml{val rev : ’a tree -> ’a list} flattens a tree into a list.

\end{quotation}

we obtain:

The datatype α’a tree implements a polymorphic n-ary tree.
The function val rev : α’a tree -> α’a list flattens a tree into
a list.

3

1.4 Changing the Fonts

The macros \smlFont and \smlTypeVarFont define the fonts used for typeset-
ting ML text and type variables. They are predefined as follows:

\newcommand{\smlFont}{\verbatim@font}

\newcommand{\smlTypeVarFont}{\it}

Furthermore, the default method of typesetting a type variable is defined as:

\newcommand{\makeSmlTypeVar}[1]{’{\smlTypeVarFont #1}}

These can be overridden by the user if desired.

1.5 Enabling $

By default, the math shift character $ is disabled within the environment
smldisplay and the macro sml. It is possible to enable this character by declar-
ing:

\smlDollarOn

in the prologue of a document. For example, we can write:

\smlDollarOn

\begin{smldisplay}

datatype ’a tree = EMPTY | NODE of ’a * ’a tree list

\textrm{A balanced tree with n nodes has height $O(\log n)$}

\end{smldisplay}

and obtain:

datatype α’a tree = EMPTY | NODE of α’a * α’a tree list

A balanced tree with n nodes has height O(log n)

To turn off the math shift character $, we can write

\smlDollarOff

1.6 Numbered Program Listings

Numbered program listings can be displayed using the smllisting environment,
which behaves exactly like smldisplay except that every line is prefixed by a
line number. For example, when we write:

\smlTypeVar{n}{\(\alpha\)}

\smlTypeVar{e}{\(\beta\)}

\smlTypeVar{g}{\(\gamma\)}

\begin{smllisting}{1}{1}

signature SINGLE_SOURCE_SHORTEST_PATHS =

sig

4

val single_source_shortest_paths :

\{ weight : ’e Graph.edge -> ’w,

< : ’w * ’w -> bool,

+ : ’w * ’w -> ’w,

zero : ’w,

inf : ’w

\} ->

(’n,’e,’g) Graph.graph ->

Graph.node_id ->

\{ dist : ’w Array.array,

pred : Graph.node_id Array.array

\}

end

\end{smllisting}

we get:
1 signature SINGLE_SOURCE_SHORTEST_PATHS =

2 sig

3

4 val single_source_shortest_paths :

5 { weight : β’e Graph.edge -> ’w,
6 < : ’w * ’w -> bool,

7 + : ’w * ’w -> ’w,
8 zero : ’w,
9 inf : ’w

10 } ->

11 (α’n,β’e,γ’g) Graph.graph ->

12 Graph.node_id ->

13 { dist : ’w Array.array,

14 pred : Graph.node_id Array.array

15 }
16 end

The environment smllisting requires two numeric parameters. The first
parameter determines the initial line number of the listing, while the second pa-
rameter determines how often the line number should be printed. For example,
if the second parameter is 2, then the line number appears every two lines.

The environment smlboxedlisting is similar to smllisting except that a
box is also drawn around the program listing.

The following macros control how the numbers are displayed

\newcommand{\smlNumberFont}{\smlFont}

\newcommand{\smlNumberStyle}[1]{\arabic{#1}}

The first macro \smlNumberFont controls the font used for line numbering,
which by default is \tt. The second macro \smlNumberStyle displays the line
count as arabic numerals.

5

