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Abstract

Writing native code generators for modern processors is a significant investment. Unfortunately it
is difficult to reuse this investment for other architectures, and even more difficult to reuse for other
source language compilers. MLRISC is a customizable optimizing back-end written in Standard ML1

and has been successfully retargeted to multiple architectures. MLRISC deals elegantly with the special
requirements imposed by the execution model of different high-level, typed languages, by allowing many
components of the system to be customized to fit the source language semantics and runtime system
requirements.

1url: http://cm.bell-labs.com/cm/cs/what/smlnj/sml.html
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1 MLRISC

A framework for retargetable and optimizing compiler back ends

Lal George2 Allen Leung3

Bell Labs New York University

MLRISC logo

Contributors4

Writing native code generators for modern processors is a significant investment. Unfortunately it
is difficult to reuse this investment for other architectures, and even more difficult to reuse for other
source language compilers. MLRISC is a customizable optimizing back-end written in Standard ML5

and has been successfully retargeted to multiple architectures. MLRISC deals elegantly with the special
requirements imposed by the execution model of different high-level, typed languages, by allowing many
components of the system to be customized to fit the source language semantics and runtime system
requirements.

The Overview pages on the left provide an introduction the MLRISC system, mostly from the client’s
perspective, while the System pages give a more detailed look at the innards, and are of interest to MLRISC
hackers. As usual, development of the system has outpaced the documentation process substantally; thus
the latter part of the document is incomplete but it may still be useful.

These pages are also available in tech report6 form.

4url: contributors.html
5url: http://cm.bell-labs.com/cm/cs/what/smlnj/sml.html
6url: ../latex/mlrisc.ps
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2.0.2 Present

• Allen Leung (NYU)
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3 Requirements

The most up-to-date MLRISC system requires Standard ML of New Jersey7 version 110.0.3 or later.

7url: http://cm.bell-labs.com/cm/cs/what/smlnj/index.html
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4 How to Obtain MLRISC

There are a few ways to obtain the MLRISC system.

1. An old version of MLRISC is available from this link8. This version is stable but very out-dated, and
does not contain the most up-to-date features.

2. New experimental versions are available from the SML/NJ software page9 as part of the SML/NJ
compiler releases. These versions are relative stable, but do not include the entire MLRISC source
tree.

3. Allen10 keeps an up-to-date version of MLRISC at NYU for private use. This version includes ev-
erything but is under constant changes, so beware! To access the CVS repository, set your CVSROOT
environment variable to

:pserver:mlrisc@react-ilp.cs.nyu.edu:/home/leunga/mlrisc

and checkout the repository using

cvs co MLRISC++

The password to use is mlrisc.

4. Generally speaking, you can get the latest version of MLRISC by asking Lal11.

MLRISC is free, open source software, and is released under the SML/NJ license12.

8url: http://cm.bell-labs.com/cm/cs/what/smlnj/doc/MLRISC/quick-tour/index.html
9url: http://cm.bell-labs.com/cm/cs/what/smlnj/software.html

10url: mailto:leunga@cs.nyu.edu
11url: mailto:george@research.bell-labs.com
12url: http://cm.bell-labs.com/cm/cs/what/smlnj/license.html
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5 Problem Statement

Writing a native code generator for any language is a significant investment, especially for todays modern
processors with require extensive compiler support to achieve high performance. The algorithms that
must be used to generate high quality code are complex, sometimes quite delicate, and require substan-
tial infrastructure.

Retargeting compiler

A specific architecture has a relatively short life time in relation to the time taken to build the code
generator, and one quickly needs the ability to retarget to new versions of the architecture, or to different
target architectures. This is by no means an open problem. There are many compilers today that target
multiple architectures, however the quality of code varies. For example, lcc by Chris Fraser and David
Hansen does no back end optimizations; gcc from the Free Software Foundation does extensive peephole
and simple data flow optimizations, and falls short on advanced superscalar optimizations; and finally
the IMPACT compiler done by the Impact group at the University of Illinois specializes in more advanced
superscalar and predicated architectures.

UNCOL?

Assuming the retargeting issue is solved, one would like to use all the developed infrastructure for
multiple source languages. This problem is far from solved; even though gcc has been used for multiple
languages like Ada, Pascal, and Modula III, each of these have similiar execution models or were forced
to adopt C conventions. gcc cannot be used directly for languages such as Lisp, Smalltalk, Haskell, or ML
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that have radically different execution models and special requirements to support advanced language
features.



6 Contributions 17

6 Contributions

The optimizations provided by MLRISC are at a similar level to those performed by the Impact compiler;
several target back ends exist (Dec Alpha, HPPA, Sparc, x86, and PPC); but more importantly, the frame-
work has been demonstrated in real use13 for languages with radically different execution models. These
include:

Compiler Association
SML/NJ Bell Labs and Princeton

TIL CMU
Tiger Princeton

C– OGI
SML/Regions DIKU

Moby Bell Labs

The strength of MLRISC lies in the ability to easily create high quality code generator for each of these
systems. For example:

Tiger: Has an execution model very similar to C with stack allocated activation frames, and also main-
tains static and dynamic chains to support lexical scoping.

TIL: Is similar to C in its use of activation frames, however it uses a typed intermediate language that sup-
ports almost tag-free garbage collection. This has severe implications on the interaction of spilling
and garbage collection. The set of live variables and their locations, be it registers or frame slots, is
recorded in a trace table for a specific program point. When spilling occurs, it is necessary to adjust
some of these trace tables to reflect the new locations of live variables.

SML/NJ: Has no runtime stack, but stores all execution context in a garbage collected heap. This arrange-
ment imposes special requirements for spilling registers. SML/NJ also does dynamic linking — that
is to say, no use is made of a conventional linker, but machine code is generated directly and linked
into the interactive environment, dynamically.

C–: Is a C-like portable assembly language used as an intermediate language for high level typed lan-
guage, and provides direct compilation support for exceptions and precise garbage collection. In
addition, it allows interoperability with C function calls.

It is not uncommon for any of these systems to store special global values in dedicated registers, and
use their own parameter passing and callee-save conventions. In any language that supports garbage
collection, there are also the issues of generating gc type maps, and gc-safety in aggressive optimizations.
MLRISC deals with all these important issues by allowing customization of many aspects of the system.

13url: systems.html
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7 MLRISC Based Compiler

A traditional compiler will typically consist of a lex/yacc based front end, an optimization phase that
is repeatedly invoked over some intermediate representation, and finally a back end code generation
phase. The intermediate representation is usually at a level of detail appropriate to the optimization being
performed, and may be far removed from the native instructions of the target architecture. The back end
proceeds by translating the intermediate representation into instructions and registers for an abstract
machine that is much closer to the target architecture. Retargetting is then achieved by mapping the
registers and instructions of the abstract machine to registers and instructions of the target architecture.

MLRISC based compiler

An MLRISC based compiler, on the other hand, translates the intermediate representation into ML-
RISC instructions and it is the MLRISC instructions that get mapped onto instructions of the target ar-
chitecture. Another possibility is to translate the front end abstract machine instructions instead of the
intermediate representation. Once MLRISC instructions have been generated, nearly all aspects of high
quality code generation come for free. A long story would be cut short if MLRISC were just another ab-
stract machine.

The key idea behind MLRISC is that there is no single MLRISC instruction set or intermediate program
representation, but the MLRISC intermediate representation is specialized to the needs of the front end
source language being compiled. The specialization does not stop there, but the:

• target instruction set,

• flowgraph, and

• entire optimization suite

are specialized to the needs of the front end. The ability to consistently specialize each of these to
create a back end for a specific language, summarizes the characteristics of MLRISC that distinguishes it
from other retargetable backends.

It is important to emphasize that little optimizations performed on the MLRISC intermediate repre-
sentation. Most optimizations are done on a flowgraph of target machine instructions, to enable op-
timizations that take advantage of the characteristics of each architectural. The MLRISC intermediate
representation is just used as a stepping stone to get to the flowgraph.
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8 MLRISC Intermediate Representation

The MLRISC intermediate language is called MLTREE At the lowest level, the core of MLTREE is a Register
Transfer Language (RTL) but represented in tree form. The tree form makes it convenient to use tree
pattern matching tools like BURG (where appropriate) to do target instruction selection. Thus a tree such
as:

MV(32, t,

ADDT(32, MULT(32, REG(32, b), REG(32, b)),

MULT(32, MULT(REG(32, a), LI(4)), REG(32, c))))

computes t := b*b + 4*a*c to 32-bit precision. The nodes ADDT and MULT are the trapping form of
addition and multiplication, and LI is used for integer constants. An infinite number of registers are
assumed by the model, however depending on the target machine the first 0..K registers map onto the
first K registers on the target machine. Everything else is assumed to be a pseudo-register. The REG node
is used to indicate a general purpose register.

The core MLTREE language makes no assumptions about instructions or calling convections of the
target architecture. Trees can be created and combined in almost any form, with certain meaningless
trees such as LOAD(32, FLOAD(64, LI 0)) being forbidden by the MLTREE type structure.

Such pure trees are nice but inadequate in real compilers. One needs to be able to propagate front
end specific information, such as frame sizes and frame offsets where the actual values are only available
after register allocation and spilling. One could add support for frames in MLRISC, however this becomes
a slippery slope because some compilers (e.g. SML/NJ) do not have a conventional notion of frames —
indeed there is no runtime stack in the execution of SML/NJ. A frame organization for one person may
not meet the needs for another, and so on. In MLRISC, the special requirements of different compilers is
communicated into the MLTREE language, and subsequently into the optimizations phases, by specializ-
ing the MLTREE data structure with client specific information. There are currently five dimensions over
which one could specialize the MLTREE language.

Constants Constants are an abstraction for integer literals whose value is known after certain phases of
code generation. Frame sizes and offsets are an example.

MLRISC intermediate representation
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Regions While the data dependencies between arithmetic operations is implicit in the instruction, the
data dependencies between memory operations is not. Regions are an abstract view of memory
that make this dependence explicit and is specially useful for instruction reordering.

Pseudo-ops Pseudo-ops are intended to correspond to pseudo-op directives provided by native assem-
blers to lay out data, jump tables, and perform alignment.

Annotations Annotations14 are used for injecting semantics and other program information from the
front-end into the backend. For example, a probability annotation can be attached to a branch
instruction. Similarly, line number annotations can be attached to basic blocks to aid debugging.
In many language implementations function local variables are spilled to activation frames on the
stack. Spill slots contribute to the size of a function’s frame. When an instruction produces a spill,
we may need to update the frame associated to that instruction (increase the size of its spilling area).
The frame for the current function can be injected in an annotation, which can be later examined
by the spill callback during register allocation.

Annotations are implemented as an universal type and can be arbitrarily extended. Individual an-
notations can be associated with compiler objects of varying granularity, from compilation units, to
regions, basic blocks, flow edges, and down to the instructions.

User Defined Extensions In the most extreme case, the basic constructors defined in the MLTREE lan-
guage may be inadequate for the task at hand. MLTREE allows the client to arbitrarily extend the set
of statements and expressions to more closely match the source language and the target architec-
ture(s).

For example, when using MLRISC for the backend of a DSP compiler it may be useful to extend the
set of MLRISC operators to include fix point and saturated arithmetic. Similarly, when developing a
language for loop parallelization, it may be useful to extend the MLTREE language with higher-level
loop constructs.

8.1 Examples

In the SML/NJ compiler, an encoding of a list of registers is passed to the garbage collector as the roots of
live variables. This encoding cannot be computed until register allocation has been performed, therefore
the integer literal encoding is represented as an abstract constant15.

Again, in the SML/NJ compiler, most stores are for initializing records in the allocation space, therefore
representing every slot in the allocation space as a unique region allows one to commute most store
instructions. Similarly, most loads are from immutable records, and a simple analysis marks these are
being accesses to read-only memory. Read-only memory is characterized as having multiple uses but no
definitions.

In the TIL compiler, a trace table is generated for every call site that records the set of live variables,
their location (register or stack offset), and the type associated with the variable. This table is integrated
into the program using the abstract pseudo-op mechanism. An interesting aspect of these tables is that
they may need adjustment based on the results of register spilling.

The more convention use of the psuedo-op abstraction is to propagate function prologue and epilogue
information.

The constants abstraction are created by a tree node called CONST. In the SML/NJ compiler, the tree
that communicates garbage collection information looks like:

14url: annotations.html
15url: constants.html
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MV(32, maskReg, CONST{r110,r200,r300,r400 ...})

where maskReg is a dedicated register. On the DEC Alpha, this would get translated to:

LDA maskReg, {encode(r110,r200,r300,r400, ...)}

which indicates that the alpha instruction set (and optimization suite) know about these types of val-
ues. Further, after register allocation, the LDA instruction may not be sufficient as the encoding may result
in a value that is too large as an operand to LDA. Two instructions may ultimately be required to load the
encoding into the maskReg register. This expansion is done during span-dependency resolution16.

All these examples are intended to indicate that one intermediate representation and optimization
suite does not fit all, but that the intermediate representation and optimization suite needs to be special-
ized to the needs of the client.

16url: span-dep.html
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9 MLRisc Generation

Every compiler will eventually compile down to an abstract machine that it believes will execute source
programs efficiently. The abstract machine will typically consists of abstract machine registers and in-
structions, one or more stacks, and parameter passing conventions. The hope is that all this will map
down efficiently onto the target machine. Indeed, the abstract machine should be reasonably close to
architectures that are envisioned as possible targets. Several step need to be followed in the generation of
MLRisc.

1. The first step in generating target machine code is to define the MLRisc intermediate representation
after it has been appropriately specialized. The interfaces that describe the dimensions of special-
ization are quite simple. Depending on the compiler, these may be target dependent; for example,
in the SML/NJ compiler, the encoding of registers used to indicate the roots of garbage collection
depend on how the runtime system decodes the information.

2. The only real connection between the MLRisc intermediate representation and the target machine
is that the first 0..K − 1 MLRisc registers map onto the first K physical registers on the target ma-
chine. Thus some mapping of dedicated abstract machine registers to physical target registers is
required. It is not always necessary to map abstract machine registers to physical machine regis-
ters. For example, on architectures like the x86 with few registers, some abstract machine registers
may be mapped to fixed memory locations. Thus an abstract machine register like the maskReg may
have something like:

LOAD(32, LABEL maskRegLab)

spliced instead.

3. The unit of compilation is called a cluster17 which is the smallest unit for inter-procedural optimiza-
tions. A cluster will typically consist of several entry points that may call each other, as well as call
local functions in the module. For maximum flexibility, the parameter passing convention for local
functions should be specialized by the register allocator18.

Once the MLRisc trees for a cluster have been built, they must be converted into target assembly or
machine code. This is done by building up a function (codegen) that glues together optimizations
modules that have been specialized. For example, the target instruction set must be specialized to
hold the MLRisc constants; the flowgraph must be specialized to carry these instructions as well as
the MLRisc pseudo-ops; the optimization modules must know about several front end constraints
such as how to spill registers.

If the module that translates the abstract machine instructions into MLRisc instructions has been
appropriately parameterized, then it can be reused for multiple target architectures. For high level lan-
guages it is better to generate MLRisc instructions from the high level intermediate form used by the front
end of the compiler.

17url: cluster.html
18url: mlrisc-ra.html
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10 Back End Optimizations

Once MLRisc trees have been generated, they are passed into a module that generates a flowgraph of
target machine instructions. Again, this module and all subsequent optimization phases have been spe-
cialized to the front end. Nearly all instruction selection modules provided by MLRISC use a simple tree

Back end optimizations

pattern matching algorithm rather than the more heavy weight BURG tools — including the x86 It is im-
portant to emphasis that all optimizations are performed on the flowgraph of target machine instructions
and not MLRisc immediate IR. There is complete flexibility in the order, and nature of the optimizations
performed.
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11 Register Allocation

All the optimization modules are written in a generic fashion but parameterized over architecture and
client information. The Standard ML module system is a central mechanism to the design and organiza-
tion of MLRISC. Parameterized modules in Standard ML are provided by functors, that takes the specifi-
cation of input modules and produces a module that matches some output specification. In particular,
SML/NJ modules are higher order, which means that a functor can yield functors as a result. I will use
register allocation as an example.

Back end optimizations

The register allocator is written has a higher order functor which when applied to suitable arguments
produces an integer or floating point register allocator. The figure is simplifed because the output functor
is not restricted to integer and floating point allocators but could also be other types of allocators, for
example, condition code. The integer and floating point register allocators are functors that only take
client specific parameters as input, whereas the higher-order takes architectural parameters as input. The
client specific parameters include:

nFreeRegs : int

dedicated : int list

spill : ..

reload : ..

where:

nFreeRegs is the number of free registers or essentially the number of colors available for coloring the
interference graph.

dedicated is the list of dedicated registers. It is useful to exclude these from the graph-color process to
reduce the size of the data structures created.

spill/reload are functions that describe how to spill and reload registers that need to be spilled or
reloaded in an instruction. These two functions are perhaps the most complicated pieces of in-
formation that need to be supplied by a client of MLRISC.
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The architecture specific parameters supplied to the higher-order functor include:

firstPseudoReg : int

maxPseudoR : unit -> int

defUse : instruction -> (int list * int list)

where:

firstPseudoR is an integer representing the first pseudo register. Any register below this value is a phys-
ical register.

maxPseudoR is a function that returns an integer indicating the number of the highest pseudo-register
that has been used in the program. This number is useful in estimating the intial size of various
tables.

defUse is a function that returns the registers defined and used by an instruction.

These parameters are largely self explanatory, however, there are addition architectural parameters
that relate to the internal representation of instructions that would be ugly to explain. For example there
is the need for a module that does liveness analysis over the register class that is being allocated. This
type of complexity can be shielded from a user. For the DEC Alpha the situation is as shown in the figure:

Back end optimizations

The client only sees the functors on the right, to which only client specific information need be pro-
vided. There is the illusion of a dedicated DEC Alpha integer and floating point register allocator. There
are several advantages to this:

• The architectural parameters that are implementation specific do not need to be explained to a user,
and are supplied by someone that intimately understands the port to the target architecture.

• The number of parameters that a client supplies is reduced.

• The parameters that the client supplies is restricted to things that concern the front end.
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12 Machine Description

12.1 Overview

MDGen is a simple tool for generating various modules in the MLRISC customizable code generator di-
rectly from machine descriptions. These descriptions contain architectural information such as:

1. How the the register file(s) are organized.

2. How instructions are encoded in machine code: MLRISC uses this information to generate machine
instructions directly into a byte stream. Directly machine code generation is used in the SML/NJ
compiler.

3. How instructions are pretty printed in assembly: this is used for debugging and also for assembly
output for other non-SML/NJ backends.

4. How instructions are internally represented in MLRISC.

5. Other information needed for performing optimizations, which include:

(a) The register transfer list (RTL) that defines the operational semantics of the instruction.

(b) Delay slot mechanisms.

(c) Information for performing span dependency resolution.

(d) Pipeline and reservation table characteristics.

Currently, item 5 is not ready for prime time.

12.1.1 Why MDGen?

MLRISC manipulates all instruction sets via a set of abstract interfaces, which allows the programmer
to arbitrarily choose an instruction representation that is most convenient for a particular architecture.
However, various functions that manipulate this representation must be provided by the instruction set’s
programmer. As the number and complexities of each optimizations grow, and as the number of archi-
tectures increases, the functions for manipulating the instructions become more numerous and complex.
In order to keep the effort of developing and maintaining an instruction set manageable, the MDGen tool
is developed to (partially) automate this task.

12.1.2 Syntax

MDGen’s machine descriptions are written in a syntax that is very much like that of Standard ML19. Most
core SML constructs are recognized. In addition, new declaration forms specific to MDGen are used to
specify architectural information.

19url: http://cm.bell-labs.com/cm/cs/what/smlnj/sml.html
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Reserved Words All SML keywords are reserved words in MDGen. In addition, the following keywords
are also reserved:

always architecture assembly at backwards big bits branching called

candidate cell cells cellset debug delayslot dependent endian field

fields formats forwards instruction internal little locations lowercase

name never nodelayslot nullified opcode ordering padded pipeline predicated

register rtl signed span storage superscalar unsigned uppercase

verbatim version vliw when

Two kinds are quotations marks are also reserved:

[[ ]]

‘‘ ’’

The first [[ ]] is for describing semantics. The second ‘‘ ’’ is for describing assembly syntax.

Syntactic Sugar MDGen recognizes the following syntactic sugar.

Record abbreviations Record expressions such as x=x,y=y,z=z can be simplified to just x,y,z.

Binary literals Literals in binary can be written with the prefix 0b (for integer types) or 0wb (for word
types). For example, 0wb101111 is the same as 0wx2f and 0w79.

Bit slices A bit slice, which extracts a range of bits from a word, can be written using an at expression.
For example, w at [16..18] means the same thing as Word32.andb(Word32.>>(w, 0w16),0w7), i.e.
it extracts bit 16 to 18 from w. The least significant bit the zeroth bit.

In general, we can write:

w at [range1, range2, ..., rangen]

to extract a sequence of slices from w and concatenate them together. For example, the expression

0wxabcd at [0..3, 4..7, 8..11, 12..15]

swap the 4 nybbles from the 16-bit word, and evaluates to 0wxdcba.

Signature Signature declarations of the form

val x y z : int -> int

can be used as a shorthand for the more verbose:

val x : int -> int

val y : int -> int

val z : int -> int

12.1.3 Elaboration Semantics

Unfortunately, there is no complete formal semantics of how an MDGen specification elaborates. But
generally speaking, a machine description is a just a structure (in the SML sense). Different components
of this structure describe different aspects of the architecture.
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Syntactic Overloading In general, the syntactic overloading are used heavily in MDGen. There are three
types of definitions:

• Definitions that defines properties of the instruction set.

• Definitions of functions and terms that are in the RTL meta-language. The syntax of MDGen’s RTL
language is borrowed heavily from Lambda-RTL, which in turns is borrowed heavily from SML.

• Definitions of functions and types that are to be included in the output generated by the MDGen
tool. These are usually auxiliary helper functions and definitions.

In general, entities of type 2, when appearing in other context, are properly meta-quoted in the semantics
quotations [[ ]].

12.1.4 Basic Structure of A Machine Description

The machine description for an architecture are defined via an architecture declaration, which has the
following general form.

architecture name =

struct

architecture type declaration
endianess declaration
storage class declarations
locations declarations
assembly case declarations
delayslot declaration
instruction machine encoding format declarations
nested structure declarations
instruction definition

end

12.2 Describing the Architecture

12.2.1 Architecture type

Architecture type declaration specifies whether the architecture is a superscalar or a VLIW/EPIC machine.
Currently, this information is ignored.

architecture type declaration ::= superscalar | vliw

12.2.2 Storage class

Storage class declarations specify various information about the registers in the architecture. For ex-
ample, the Alpha has 32 general purpose registers and 32 floating point registers. In addition, MLRISC
requires that each architecture specifies a (pseudo) register type20 for holding condition codes (CC). To
specify these information in MDGen, we can say:

20Called cellkind in MLRISC.
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storage

GP "r" = 32 cells of 64 bits in cellset called "register"

assembly as (fn (30,_) => "$sp"

| (r,_) => "$"^Int.toString r

)

| FP "f" = 32 cells of 64 bits in cellset called "floating point register"

assembly as (fn (f,_) => "$f"^Int.toString f)

| CC "cc" = cells of 64 bits in cellset GP called "condition code register"

assembly as "cc"

• There are 32 64-bit general purpose registers, 32 64-bit floating point registers, while CC is not a real
register type.

• Cellsets are used by MLRISC for annotating liveness information in the program. The clause in cellset

states that register type GP and FP are allotted their own components in the cellset, while the register
type CC are put in the same cellset component as GP.

• The clause assembly as specifies how each register is to be pretty printed. On the Alpha, general
purpose register are pretty printed with prefix $, while floating point registers are pretty printed with
the prefix $f. A special case is made for register 30, which is the stack pointer, and is pretty printing
as $sp. Pseudo condition code registers are pretty printed with the prefix cc.

12.2.3 Locations

Special locations in the register files can be declared using the locations declarations. On the Alpha, GPR
30 is the stack pointer, GPR 28 and floating point register 30 are used as the assembly temporaries. This
special constants can be defined as follows:

locations

stackptrR = $GP[30]

and asmTmpR = $GP[28]

and fasmTmp = $FP[30]

12.3 Specifying the Machine Encoding

12.3.1 Endianess

The endianess declaration specifies whether the machine is little endian or big endian so that the correct
machine instruction encoding functions can be generated. The general syntax of this is:

endianess declaration ::= little endian | big endian

The Alpha is little endian, so we just say:

little endian

12.3.2 Defining New Instruction Formats

How instructions are encoded are specified using instruction format declarations. An instruction for-
mat declaration has the following syntax:
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instruction machine encoding format declarations ::=

instruction formats n bits

format1
| format2
| format3
| ...

| formatn-1
| formatn

Each encoding format can be a primitive format, or a derived format.

Primitive formats A primitive format is simply specified by giving it a name and specifying the position,
names and types of its fields. This is usually the same way it is described in a architectural reference
manual.

Here is how we specify some of the (32 bit) primitive instruction formats used in the Alpha.

instruction formats 32 bits

Memory{opc:6, ra:5, rb:GP 5, disp: signed 16}
| Jump{opc:6=0wx1a,ra:GP 5,rb:GP 5,h:2,disp:int signed 14}
| Memory_fun{opc:6, ra:GP 5, rb:GP 5, func:16}
| Branch{opc:branch 6, ra:GP 5, disp:signed 21}
| Fbranch{opc:fbranch 6, ra:FP 5, disp:signed 21}
| Operate0{opc:6,ra:GP 5,rb:GP 5,sbz:13..15=0,_:1=0,func:5..11,rc:GP 5}
| Operate1{opc:6,ra:GP 5,lit:signed 13..20,_:1=1,func:5..11,rc:GP 5}

For example, the format Memory

Memory{opc:6, ra:5, rb:GP 5, disp: signed 16}

has a 6-bit opcode field, a 5-bit ra field, a 5-bit rb field which always hold a general purpose register,
and a 16-bit sign-extended displacement field. The field to the left is positioned at the most significant
bits, while the field to the right is positioned at the least. The widths of these fields must add up to 32 bits.

Similarly, the format Jump

Jumpopc:6=0wx1a,ra:GP 5,rb:GP 5,h:2,disp:int signed 14

contains a 6-bit opcode field which always hold the constant 0x1a, two 5-bit fields ra and rb which are
of type GP, and a 14-bit sign-extended field of type integer.

Each field in a primitive format has one of 5 forms:

name : position
name : position = value
name : type position
name : type position = value
_ : position = value

where position is either a width, or a bits range n..m, with an optional signed prefix. The last form,
with a wild card for the field name, can be used to specify an anonymous field that always has a fixed
value.
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By default, a field has type Word32.word. If a type T is specified, then the function emit_T is implicitly
called to convert the type into the appropriate encoding. The function emit_T are generated automati-
cally by MDGen if it is a cellkind defined by the storage class declaration, or if it is a primitive type such
as integer or boolean. There are also other ways to automatically generate this function (more on this
later.)

For example, the format Operate1

Operate1{opc:6,ra:GP 5,lit:signed 13..20,_:1=1,func:5..11,rc:GP 5}

states that bits 26 to 31 are allocated to field opc, bits 21 to 25 are allocated to field ra, which is of type
GP, bits 13 to 20 are allocated to field lit, bit 12 is a single bit of value 1, etc.

MDGen generates a function for each primitive format declaration of the same name that can be used
for emitting the instruction. In the case of the Alpha, the following functions are generated:

val Memory : {opc:Word32.word, ra:Word32.word,

rb:int, disp:Word32.word} -> unit

val Jump : {ra:int, rb:int, disp:Word32.word} -> unit

val Operate1 : {opc:Word32.word, ra:int, lit:Word32.word,

func:Word32.word, rc:int} -> unit

Derived formats Derived formats are simply instruction formats that are defined in terms of other for-
mats. On the alpha, we have a Operate format that simplifies to either Operate0 or Operate1, depending
on whether the second argument is a literal or a register.

Operate{opc,ra,rb,func,rc} =

(case rb of

I.REGop rb => Operate0{opc,ra,rb,func,rc}
| I.IMMop i => Operate1{opc,ra,lit=itow i,func,rc}
| I.HILABop le => Operate1{opc,ra,lit=Highle=le,func,rc}
| I.LOLABop le => Operate1{opc,ra,lit=Lowle=le,func,rc}
| I.LABop le => Operate1{opc,ra,lit=itow(LabelExp.valueOf le),func,rc}
)

12.3.3 Generating Encoding Functions

In MLRISC, we represent an instruction as a set of ML datatypes. Some of these datatypes represent
specific fields or opcodes of the instructions. MDGen lets us to associate a machine encoding to each
datatype constructor directly in the specification, and automatically generates an encoding function for
these datatypes.

There are two different ways of specifying an encoding. The first way is just to write the machine
encoding directly next the constructor. Here’s an example directly from the Alpha description:

structure Instruction =

struct

datatype branch! = (* table C-2 *)

BR 0x30

| BSR 0x34

| BLBC 0x38

| BEQ 0x39 | BLT 0x3a | BLE 0x3b
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| BLBS 0x3c | BNE 0x3d | BGE 0x3e

| BGT 0x3f

datatype fbranch! = (* table C-2 *)

FBEQ 0x31 | FBLT 0x32

| FBLE 0x33 | FBNE 0x35

| FBGE 0x36 | FBGT 0x37

...

end

The datatypes branch and fbranch represent specific branch opcodes for integer branches BRANCH,
or floating point branches FBRANCH. On the Alpha, instruction BR is encoded with an opcode of 0x30,
instruction BSR is encoded as 0x34 etc. MDGen automatically generates two functions

val emit_branch : branch -> Word32.word

val emit_fbranch : branch -> Word32.word

that perform this encoding.
In the specification for the instruction set, we state that the BRANCH instruction should be encoded

using format Branch, while the FBRANCH instruction should be encoded using format Fbranch.

structure MC =

struct

(* Auxiliary function for computing the displacement of a label *)

fun disp ... = ...

...

end

...

instruction

...

| BRANCH of branch * $GP * Label.label

Branch{opc=branch,ra=GP,disp=disp label}

| FBRANCH of fbranch * $FP * Label.label

Fbranch{opc=fbranch,ra=FP,disp=disp label}

| ...

Since the primitive instructions formats Branch and FBranch are defined with branch and fbranch as
the type in the opcode field

| Branch{opc:branch 6, ra:GP 5, disp:signed 21}
| Fbranch{opc:fbranch 6, ra:FP 5, disp:signed 21}

the functions emit_branch and emit_fbranch are implicitly called.
Another way to specify an encoding is to specify a range, as in the following example:
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datatype fload[0x20..0x23]! = LDF | LDG | LDS | LDT

datatype fstore[0x24..0x27]! = STF | STG | STS | STT

This states that LDF should be assigned the encoding 0x20, LDG the encoding 0x21 etc. This form is
useful for specifying a consecutive range.

12.3.4 Encoding Variable Length Instructions

Most architectures nowadays have fixed length encodings for instructions. There are some notatable
exceptions, however. The Intel x86 architecture uses a legacy variable length encoding. Modern RISC
machines developed for embedded systems may utilize space-reduction compression schemes in their
instruction sets. Finally, VLIW machines usually have some form of NOP compression scheme for com-
pacting issue packets.

12.4 Specifying the Assembly Formats

12.4.1 Assembly Case Declaration

The assembly case declaration specifies whether the assembly should be emitted in lower case, upper
case, or verbatim. If either lower case or upper case is specified, all literal strings are converted to the
appropriate case. The general syntax of this declaration is:

assembly case declaration ::=

lowercase assembly

| uppercase assembly

| verbatim assembly

12.4.2 Assembly Annotations

Assembly output are specified in the assembly meta quotations ‘‘ ’’, or string quotations " ". For ex-
ample, here is a fragment from the Alpha description:

instruction

...

| LOAD of {ldOp:load, r: $GP, b: $GP, d:operand, mem:Region.region}
‘‘<ldOp>�<r>, <d>()<mem>’’

| STORE of {stOp:store, r: $GP, b: $GP, d:operand, mem:Region.region}
‘‘<stOp>�<r>, <d>()<mem>’’

| BRANCH of branch * $GP * Label.label

‘‘<branch>�<GP>, <label>’’

| FBRANCH of fbranch * $FP * Label.label

‘‘<fbranch>�<FP>, <label>’’

| CMOVE of {oper:cmove, ra: $GP, rb:operand, rc: $GP}
‘‘<oper>�<ra>, <rb>, <rc>’’
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| FOPERATE of {oper:foperate, fa: $FP, fb: $FP, fc: $FP}
‘‘<oper>�<fa>, <fb>, <fc>’’

| ...

All characters within the quotations ‘‘ ’’ have the same interpretation as in the string quotation " ",
except when they are delimited by the backquotes < >. Here’s how the backquote is interpreted:

• If it is <x> and x is a variable name of type t, and if an assembly function of type t is defined, then it
will be invoked to convert x to the appropriate text.

• If it is <x> and x is a variable name of type t, and if an assembly function of type t is NOT defined,
then the function emit_x will be called to pretty print x.

• If it is <e> where e is a general expression, then it will be used directly.

12.4.3 Generating Assembly Functions

Similar to machine encodings, we can attach assembly annotations to datatype definitions and let MD-
Gen generate the assembly functions for us. Annotations take two forms, explicit or implicit. Explicit
annotations are enclosed within assembly quotations ‘‘ ’’.

For example, on the Alpha the datatype operand is used to represent an integer operand. This datatype
is defined as follows:

datatype operand =

REGop of $GP ‘‘<GP>’’

| IMMop of int ‘‘<int>’’

| HILABop of LabelExp.labexp ‘‘hi(<labexp>)’’

| LOLABop of LabelExp.labexp ‘‘lo(<labexp>)’’

| LABop of LabelExp.labexp ‘‘<labexp>’’

| CONSTop of Constant.const ‘‘<const>’’

Basicaly this states that REGop r should be pretty printed as $r, IMMop i as i, HILABexp le as hi(le),
etc.

Implicit assembly annotations are specified by simply attaching an exclamation mark at the end of the
datatype name. This states that the assembly output is the same as the name of the datatype construc-
tor21. For example, the datatype operate is a listing of all integer opcodes used in MLRISC.

datatype operate! = (* table C-5 *)

ADDL (0wx10,0wx00) | ADDQ (0wx10,0wx20)

| CMPBGE(0wx10,0wx0f) | CMPEQ (0wx10,0wx2d)

| CMPLE (0wx10,0wx6d) | CMPLT (0wx10,0wx4d) | CMPULE (0wx10,0wx3d)

| CMPULT(0wx10,0wx1d) | SUBL (0wx10,0wx09)

| SUBQ (0wx10,0wx29)

| S4ADDL(0wx10,0wx02) | S4ADDQ (0wx10,0wx22) | S4SUBL (0wx10,0wx0b)

| S4SUBQ(0wx10,0wx2b) | S8ADDL (0wx10,0wx12) | S8ADDQ (0wx10,0wx32)

| S8SUBL(0wx10,0wx1b) | S8SUBQ (0wx10,0wx3b)

21But appropriately modified by the assembly case declaration.



12.5 Defining the Instruction Set 35

| AND (0wx11,0wx00) | BIC (0wx11,0wx08) | BIS (0wx11,0wx20)

| EQV (0wx11,0wx48)

| ORNOT (0wx11,0wx28) | XOR (0wx11,0wx40)

| EXTBL (0wx12,0wx06) | EXTLH (0wx12,0wx6a) | EXTLL(0wx12,0wx26)

| EXTQH (0wx12,0wx7a) | EXTQL (0wx12,0wx36) | EXTWH(0wx12,0wx5a)

| EXTWL (0wx12,0wx16) | INSBL (0wx12,0wx0b) | INSLH(0wx12,0wx67)

| INSLL (0wx12,0wx2b) | INSQH (0wx12,0wx77) | INSQL(0wx12,0wx3b)

| INSWH (0wx12,0wx57) | INSWL (0wx12,0wx1b) | MSKBL(0wx12,0wx02)

| MSKLH (0wx12,0wx62) | MSKLL (0wx12,0wx22) | MSKQH(0wx12,0wx72)

| MSKQL (0wx12,0wx32) | MSKWH (0wx12,0wx52) | MSKWL(0wx12,0wx12)

| SLL (0wx12,0wx39) | SRA (0wx12,0wx3c) | SRL (0wx12,0wx34)

| ZAP (0wx12,0wx30) | ZAPNOT (0wx12,0wx31)

| MULL (0wx13,0wx00) | MULQ (0wx13,0wx20)

| UMULH (0wx13,0wx30)

| SGNXL "addl" (0wx10,0wx00) (* same as ADDL *)

This definitions states that ADDL should be pretty printed as addl, ADDQ as addq, etc. However, the
opcode SGNXL is pretty printed as addl since it has been explicitly overridden.

12.5 Defining the Instruction Set

How the instruction set is represented is declared using the instruction declaration. For example, here’s
how the Alpha instruction set is defined:

instruction

DEFFREG of $FP

| LDA of {r: $GP, b: $GP, d:operand}
| LDAH of {r: $GP, b: $GP, d:operand}
| LOAD of {ldOp:load, r: $GP, b: $GP, d:operand, mem:Region.region}
| STORE of {stOp:store, r: $GP, b: $GP, d:operand, mem:Region.region}
| FLOAD of {ldOp:fload, r: $FP, b: $GP, d:operand, mem:Region.region}
| FSTORE of {stOp:fstore, r: $FP, b: $GP, d:operand, mem:Region.region}
| JMPL of {r: $GP, b: $GP, d:int} * Label.label list

| JSR of {r: $GP, b: $GP, d:int} * C.cellset * C.cellset * Region.region

| RET of {r: $GP, b: $GP, d:int}
| BRANCH of branch * $GP * Label.label

| FBRANCH of fbranch * $FP * Label.label

| ...

The instruction declaration defines a datatype and specifies that this datatype is used to represent
the instruction set. Generally speaking, the instruction set’s designer has complete freedom in how the
datatype is structured, but there are a few simple rules that she should follow:

• If a field represents a register, it should be typed with the appropriate storage types $GP, $FP, etc. in-
stead of int. MDGen will treat its value in the correct manner; for example, during assembly emis-
sion a field declared type int is printed as an integer, while a field declared type $GP is displayed as
a general purpose register.

• MDGen recognizes the following special types: label, labexp, region, and cellset.
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12.6 Specifying Instruction Semantics

MLRISC performs all optimizations at the granulariy of individual instructions, specialized to the archi-
tecture at hand. Many optimizations are possible only if the “semantics” of the instructions set to are
properly specified. MDGen contains a register transfer language (RTL) sub-language that let us to de-
scribe instruction semantics in a modular and succinct manner.

The semantics of this RTL sub-language has been borrowed heavily from Norman Ramsey’s and Jack
Davidson’s Lambda RTL. There are a few main differences, however:

• The syntax of our RTL language is closer to that of ML than Lambda RTL.

• Our RTL language, like that of MDGen, is tied closely to MLRISC.

12.7 How to Run the Tool

12.8 Machine Description

Here are some machine descriptions in varing degree of completion.

• Sparc22

• Hppa23

• Alpha24

• PowerPC25

• X8626

12.9 Syntax Highlighting Macros

• For vim 5.327

22file: sparc/sparc.md
23file: hppa/hppa.md
24file: alpha/alpha.md
25file: ppc/ppc.md
26file: X86/X86.md
27url: md.vim
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13 Garbage Collection Safety

13.1 Motivation

High level languages such as SML make use of garbage collectors to reclaim unused storage at runtime.
For generality, I assume that a precise, compacting garbage collector is used. In general, low-level opti-
mizations that reorder instructions pass gc safepoints, when applied naively, are not safe. In general, two
general classes of safety issues can be identified:

derived values A derived value x is a value that are dependent on the addresses of one of more heap allo-
cated objects a1, a2, a3, . . . and/or the recent branch history. When these allocated objects a1, a2, a3, . . .
are moved by the garbage collector, x has to be adjusted accordingly.

For example, inductive variable elimination may transformed an array indexing into a running
pointer to the middle of an array object. Such running pointer is a derived value and is dependent
on the starting address of the array.

The main difficulty in handling a derived value x during garbage collection is that sometimes it is
impossible or counter-productive to recompute from a1, a2, a3, . . .. For example, when the recent
branch history is unknown, or when the precise relationship between x and a1, a2, a3, . . . cannot be
inferred from context. We call these unrecoverable derived values.

incomplete allocation If heap allocation is performed inlined, then code motion may render some allo-
cation incomplete at a gc safepoint. In general, incomplete allocation has to be completed, or rolled
backed and then reexecuted after garbage collection, when the source language semantics allow it.

Typically, two gc safepoints cannot be separated by an unbounded number of allocations, which im-
plies that in general, optimizations that move instructions between basic blocks are unsafe when naively
applied, which greatly limits the class of optimizations in such an environment to trivial basic block level
optimizations. framework is a necessity.

13.2 Safety Framework

MLRISC contains a gc-safety framework for performing aggressive machine level optimizations, includ-
ing SSA-based scalar optimizations, global instruction scheduling, and global register allocation. Un-
like previous work in this area, phases that perform optimizations and phases that maintain and update
garbage collection information are completely separate, and the optimizer is constructed in a fully mod-
ular manner. In particular, gc-types and safety constraints are parameterizable by the source language
semantics, the object representation, and the target architectures.

This framework has the following overall structure:

Garbage collection invariants annotation The front-end client is responsible for annotating each value
in the program with a gc type, which is used to specify the abstract object representation, and the
constraints on code motion that may be applied to such a value. The front-end uses an architecture
independent RTL28 language for representing the program, thus this annotation phase is portable
between target architectures.

GC constraints propagation After instruction selection, gc constraint are propagated throughout the
machine level program representation. Again, for portability, gc typing rules are specified in terms

28url: mltree.html
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of the RTL 29 of the machine instructions. In this phase, unsafe code motions which exposes unre-
coverable derived values to gc safepoints are automatically identified. (Pseudo) control dependence
and anti-control dependence constraints are then added the program representation to prohibit all
gc-unsafe code motions.

Machine level optimizations After constraints propagation, traditional machine level optimizations such
as SSA optimizations and/or global scheduling are applied, without regard to gc information. This
is safe because all gc safety constraints have been translated into the appropriate code motion con-
straints.

GC type propagation and gc code generation GC type inference is performed when all optimizations
have been performed. GC safepoints are then identified and the root sets are determined. In addi-
tion, compensation code are inserted at gc points for repairing recoverable derived values.

13.3 Concurrency Safety

In the presence of concurrency, i.e. multiple threads of control that communicate via a shared heap,
the above framework will have to slightly extended. As in before, we assume that context switching can
only occur at well-defined safepoints. The crucial aspect is that values that are live at safepoints must be
classified as local or global. Local values are only observable from the local thread, while global values are
potentially observable and mutable from other threads. The invariants to maintain are as follows:

• Only local and recoverable derived values may be live at a safepoint,

• Only local and recoverable allocation may be incomplete at a safepoint

29url: mltree.html
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14 System Integration

In a heavily parameterized system like this, one very quickly ends up with a large number of modules
and dependencies making it very easy to mix things up in the wrong way. For example, MLRisc is pa-

module dependencies

rameterised over pseudo-ops, constants, and regions. An instruction set must be parameterized over
constants so that instructions that carry immediate operands can also carry these abstract constants. In-
structions must also be parameterized over regions so that memory operations can be appropriately an-
notated. Finally, the flowgraph module must be parameterized over instructions it carries in basic blocks
and pseudo-ops that describe data layout and alignment constraints.

sharing constraints

In integrating a system that involves these modules, it must be the case that they were created with
the same base modules. That is to say the pseudo-ops in flowgraphs must be the same abstraction that
was used to define the MLRisc intermediate representation. Alternatively, we want sharing constraints
that assert that identity of modules used to specialize other modules. In Standard ML, this is a complete
non-issue. A single line that says exactly that is all that is needed to maintain consistency, and the module
system does the rest to ensure that the final system is built correctly.

In certain cases one wants to write a specific module for a particular architecture. For instance it may
be desirable to collapse trap barriers on the DEC Alpha where it is legal to do so. The INSTRUCTIONS in-
terface is abstract with no built-in knowledge of trap barriers as not all architectures have them. Further
the DEC Alpha has fairly unique trap barrier semantics, that one may want to write an optimization mod-
ule specific and dedicated to the Alpha instruction set and architecture, and forget about writing anything
generic. In this case, the Standard ML module system allows one to say that a specific abstraction actually
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Back end optimizations

is or matches a more detailed interface. That is to say the INSTRUCTION interface is really the DEC Alpha
instruction set.
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15 Optimizations

MLRISC assumes that all high level optimizations (target independent) have already been performed.
This includes things like inlining, array dependence analysis, and array bounds check elimination. The
target dependent optimizations that remain include register allocation, scheduling and traditional opti-
mizations to support scheduling.

15.1 Register allocation

MLRISC includes a state-of-the-art graph-coloring based register allocator that has an aggressive algo-
rithm for copy-propagation. The latter guarantees to eliminate copy instructions without introducing
spills.

Spills in the register allocator are under the control of the client via call-backs to the front end. Where
to spill registers and the associated information that must be maintained is client specific and varies with
the compiler.

15.2 Scheduling for Superscalar Architectures

Several algorithms for acyclic global scheduling are provided. These include:

• Superblock,

• a variant of Bernstein/Rodeh, and

• Percolation based scheduling.

These algorithms tend to be quite complex and require a large number of support data structures and
analysis. These include data structures such as:

• dominator/post dominator trees,

• loop nesting tree,

• control dependency graphs, and

• data dependency graphs.

Support analysis and optimization include:

• constant propagation,

• global value numbering,

• global code motion, and

• loop invariant hoisting.
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15.3 VLIW Compilation

MLRISC also contains a framework for the compilation of predicated VLIW architectures. Currently, the
following algorithms have been implemented.

• hyperblock formation

• hyperblock scheduling

• modulo scheduling
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16 Graphical Interface

All the major data structures and intermediate program states can be viewed graphically using daVinci30

and vcg31 The following screen dumps are intended to represent the range of possibilities. Graphical tools
like these are an indispensible debugging aid. Each of the dumps below were taken when generating code
for the mandelbrot on the HPPA architecture. It will be necessary to make netscape fill the size of the
screen to view these easily. Even though some of these graphs look quite complex, daVinci has several
navigational modes that allow walking to successors, or predecessors, or navigating through a scaled
down map of the graph. The navigational view is shown as another window, and the view into the graph
that is being displayed is usually outlined in blue.

Control Flowgraph after Optimization:32 Each basic block is shown with its dynamic profile and code
before and after a specific optimization. This view saves having to pour through pages of assembly
code listings – a tedious and frustrating activity.

SSA form:33 The generated flow graph is converted to SSA form which makes many code improvement
optimizations easy and efficient.

Data Dependency Graph34 A graphical view of the data dependency graph and the various kinds of de-
pendencies decorating the edges, provides a useful clue to why instructions got rearranged the way
they did. The navigational view helps to control the complexity in the display.

30url: http://www.Informatik.Uni-Bremen.DE/ davinci/
31url: http://www.cs.uni-sb.de/RW/users/sander/html/gsvcg1.html
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17 Line Counts

SML/NJ MLRISC
Generic 3,023 6,814
Hppa 725 2,285
Alpha 614 2,316
TOTAL 4,362 11,415

The table shows the number of lines involved in a basic MLRISC code

generator for SML/NJ that only does graph coloring register allocation. The SML/NJ column shows the
number of lines specific to SML/N and the MLRISC column shows the number of lines specific to ML-
RISC. The Generic shows the number of lines that are target independent for both SML/NJ and MLRISC.
The Hppa and Alpha shows the number of lines that are target dependent for both the HP Hppa and DEC
Alpha targets.

The bulk of the 3,023 generic to SML/NJ is involved in the generation of MLRisc trees. Once this is
done the incremental cost of adding a target is between 600 to 700 lines.

The MLRISC column shows that the bulk of MLRISC is quite generic and a client is saved from writing
11,415 lines of code.

SML/NJ MLRISC
Generic 121 + 3,023 15,686 + 6,814
Hppa 32 + 725 920 + 2,285
Alpha 614 2,316
TOTAL 153 + 4,362 16,606 + 11,415

If one were to include the preliminary numbers for global

acyclic scheduling in the above table, we find that the incremental cost required by the client is quite
small – approximately 153 lines of which 121 are generic. However, the scheduling infra structure is quite
large, a lot of it being quite generic.
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18 Systems Using MLRISC

Currently these are the systems that are known to be using MLRISC.

• SML/NJ35, a Standard ML compiler.

• C–36, a portable assembly language.

• The Church Project37: compilation with flow types.

• The LGIC Project38: a compiler for the CHILL language, targeting PowerPC.

• The Moby Language39

Please send additions to Allen Leung40

35url: http://cm.bell-labs.com/cm/cs/what/smlnj/index.html
36url: http://www.dcs.gla.ac.uk/ reig/c--/index.html
37url: http://www.cs.bu.edu/groups/church/
38url: http://compiler.kaist.ac.kr/projects/lgic
39url: http://www.cs.bell-labs.com/who/jhr/moby/index.html
40url: mailto:leunga@cs.nyu.edu
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19 Future Work

19.1 Short Term

Detailed user manual: A detailed user manual describing the interfaces, algorithms, and examples on
how to put together code generators.

Support for GC: There is a strong interaction with support for GC and global code motion. MLRISC aims
at providing a generic framework for code generators, and finding the right level of information to
support GC and global code motion is an issue. I think we have several solutions to address this that
need more evaluation.

Other architectures: There is the need to port to other architectures like the MIPS, and the IA-64.
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19.2 Long Term

Predicated VLIW compilation: Currently, the framework for predicated VLIW architectures compilation
is incomplete, and contain only one back end (C6)

Other compilers: I would really like to see some major compiler effort bootstrapped with an MLRISC
backend.
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Verification It is extremely difficult to debug errors in modules that perform aggressive code reorganiza-
tions. Ideas from formal methods such as typed assembly language (TAL) or Proof Carrying Code
(PCC) are worth investigating.



49

Part III

System
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20 Architecture of MLRISC

20.1 Core Components

The core components of MLRISC allow the client to quickly construct an backend for various architec-
tures. These components include:

• The MLTREE41 language, which is a RTL-like intermediate language that is used by the client to
communicate to the MLRISC system. A client is responsible for writing the module that generates
MLTREE from the source program representation.

• Instruction selection modules42, which generates target machine instructions from MLTREE.

• The Register Allocator43, which performs register allocation.

• Assemblers44, which emits assembly code.

For systems that require direct machine code generation, the following modules are included:

• Span dependency resolution45 modules, which compute addresses from symbolic addresses, fill
delay slots, and expand instructions that are span dependent

• Machine code emitters46, which emit executable machine code into a binary stream.

20.2 Optimization Modules

In addition, MLRISC has been enhanced to support various types of machine level optimizations. These
include:

• Core optimizations, which includes various types of control flow transformation, and architectural
specific peephole optimizations.

• SSA based scalar optimizations

• ILP optimizations for superscalars

• ILP optimizations for VLIW/EPIC architectures

• GC safety analysis

20.3 Basic Concepts

Basic concepts in MLRISC are:

• Instructions47 – the instruction set of the target architecture.

41url: mltree.html
42url: instrsel.html
43url: ra.html
44url: asm.html
45url: span-dep.html
46url: mc.html
47url: instructions.html
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• Cells48 – which describes registers, memory and other mutable resources in the machine.

• Regions49 – a client defined abstract type used to represent aliasing information available from the
front-end.

• Constants50 – a client defined place holder used to represent constants whose values are unknown
in the front-end.

• Pseudo Ops51 – a client defined

• Annotations52 – this is a generic mechinism for propagating information in the MLRISC sstem. The
client may attach arbitrary annotation of various granularity to MLRISC’s program representation,
which can then be propagated to later phases. These can be information related to profiling fre-
quency, dependence, comments, and/or types. The same mechanism is also used to propagate
analysis information one optimization phase to another.

• Instruction Streams53 – an abstraction for describing a stream of instructions. Instruction streams
are used to connect modules such as instruction selection, assembler, machine code emitter, and
control flow graph builder.

• Regmap54 – a mapping between registers names. MLRISC register allocators represent the result of
register allocation as a regmap.

• Labels55 – a type representing symbolic labels.

• Label Expressions56 – a type representing constant expressions involving symbolic labels.

20.4 How Things Are Fit Together

MLRISC uses two different program representations, clusters and MLRISC IR.

• Cluster57 is light-weight representation that is used when only the most basic optimizations are
required.

• MLRISC IR58 is more heavy-weight representation that is built from the MLRISC graph library59

and the MLRISC compiler graph library60. MLRISC IR allows more complex transformations and
analysis of the program graph.

Conversion modules between the two representations are provided.
In general MLRISC optimization phases are transformations applied on one of these representations.

Optimizations may be chained together to form a compiler backend. For example, a minimal backend
consists of

48url: cells.html
49url: regions.html
50url: constants.html
51url: pseudo-ops.html
52url: annotations.html
53url: streams.html
54url: regmap.html
55url: labels.html
56url: labelexp.html
57url: cluster.html
58url: mlrisc-ir.html
59url: graphs.html
60url: compiler-graphs.html
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• the instruction selection module, which translates MLTree61 into target instructions,

• the flowgraph builder, which conversts a stream of target instructions into a cluster,

• the register allocator, which performs register allocation, and

• the assembly code emitter, which generates assembly output

61url: mltree.html
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21 The MLTREE Language

MLTree is the register transfer language used in the MLRISC system. It serves two important purposes:

MLTree

1. As an intermediate representation for a compiler front-end to talk to the MLRISC system,

2. As specifications for instruction semantics

The latter is needed for optimizations which require precise knowledge of such; for example, algebraic
simplification and constant folding.

MLTree is a low-level typed language: all operations are typed by its width or precision. Operations
on floating point, integer, and condition code are also segregated, to prevent accidental misuse. MLTree
is also tree-oriented so that it is possible to write efficient MLTree transformation routines that uses SML
pattern matching.

Here are a few examples of MLTree statements.

MV(32,t,

ADDT(32,

MULT(32,REG(32,b),REG(32,b)),

MULT(32,

MULT(32,LI(4),REG(32,a)),REG(32,c))))

computes t := b*b + 4*a*c, all in 32-bit precision and overflow trap enabled; while

MV(32,t,

ADD(32,

CVTI2I(32,SIGN_EXTEND,8,

LOAD(8,

ADD(32,REG(32,a),REG(32,i))))))

loads the byte in address a+i and sign extend it to a 32-bit value.
The statement
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IF([],CMP(64,GE,REG(64,a),LI 0),

MV(64, t, REG(64, a)),

MV(64, t, NEG(64, REG(64, a)))

)

in more traditional form means:

if a >= 0 then

t := a

else

t := -a

This example can be also expressed in a few different ways:

1. With the conditional move construct described in Section 21.2.2:

MV(64, t,

COND(CMP(64, GE, REG(64, a)),

REG(64, a),

NEG(64, REG(64, a))))

2. With explicit branching using the conditional branch construct BCC:

MV(64, t, REG(64, a));

BCC([], CMP(64, GE, REG(64, a)), L1);

MV(64, t, NEG(64, REG(64, a)));

DEFINE L1;

21.1 The Definitions

MLTree is defined in the signature MLTREE62 and the functor MLTreeF63

The functor MLTreeF is parameterized in terms of the label expression type, the client supplied region
datatype, the instruction stream type, and the client defined MLTree extensions.

functor MLTreeF

(structure LabelExp : LABELEXP64

structure Region : REGION65

structure Stream : INSTRUCTION_STREAM66

structure Extension : MLTREE_EXTENSION67

) : MLTREE

62file: mltree/mltree.sig
63file: mltree/mltree.sml
64url: labelexp.html
65url: regions.html
66url: streams.html
67file: mltree/mltree-extension.sig
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21.1.1 Basic Types

The basic types in MLTree are statements (stm) integer expressions (rexp), floating point expression (fexp),
and conditional expressions (ccexp). Statements are evaluated for their effects, while expressions are
evaluated for their value. (Some expressions could also have trapping effects. The semantics of traps are
unspecified.) These types are parameterized by an extension type, which we can use to extend the set of
MLTree operators. How this is used is described in Section 22.

References to registers are represented internally as integers, and are denoted as the type reg. In
addition, we use the types src and dst as abbreviations for source and destination registers.

type reg = int

type src = reg

type dst = reg

All operators on MLTree are typed by the number of bits that they work on. For example, 32-bit ad-
dition between a and b is written as ADD(32,a,b), while 64-bit addition between the same is written as
ADD(64,a,b). Floating point operations are denoted in the same manner. For example, IEEE single-
precision floating point add is written as FADD(32,a,b), while the same in double-precision is written as
FADD(64,a,b)

Note that these types are low level. Higher level distinctions such as signed and unsigned integer value,
are not distinguished by the type. Instead, operators are usually partitioned into signed and unsigned
versions, and it is legal (and often useful!) to mix signed and unsigned operators in an expression.

Currently, we don’t provide a direct way to specify non-IEEE floating point together with IEEE floating
point arithmetic. If this distinction is needed then it can be encoded using the extension mechanism
described in Section 22.

We use the types ty and fty to stand for the number of bits in integer and floating point operations.

type ty = int

type fty = int

21.1.2 The Basis

The signature MLTREE BASIS68 defines the basic helper types used in the MLTREE signature.

signature MLTREE_BASIS =

sig

datatype cond = LT | LTU | LE | LEU | EQ | NE | GE | GEU | GT | GTU

datatype fcond =

? | !<=> | == | ?= | !<> | !?>= | < | ?< | !>= | !?> |

<= | ?<= | !> | !?<= | > | ?> | !<= | !?< | >= | ?>= |

!< | !?= | <> | != | !? | <=> | ?<>

datatype ext = SIGN_EXTEND | ZERO_EXTEND

datatype rounding_mode = TO_NEAREST | TO_NEGINF | TO_POSINF | TO_ZERO

68file: mltree/mltree-basis.sig
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type ty = int

type fty = int

end

The most important of these are the types cond and fcond, which represent the set of integer and
floating point comparisions. These types can be combined with the comparison constructors CMP and

FCMP to form integer and floating point comparisions.

Operator Comparison
LT Signed less than
LTU Unsigned less than
LE Signed less than or equal
LEU Unsigned less than or equal
EQ Equal
NE Not equal
GE Signed greater than or equal
GEU Unsigned greater than or equal
GT Signed greater than
GTU Unsigned greater than

Floating point comparisons can be “decoded” as follows. In IEEE floating point, there are four different
basic comparisons tests that we can performed given two numbers a and y:

a < b Is a less than b?

a = b Is a equal to b?

a > b Is a greater than to b?

a?b Are a and b unordered (incomparable)?

Comparisons can be joined together. For example, given two double-precision floating point expres-
sions a and b, the expression FCMP(64,<=>,a,b) asks whether a is less than, equal to or greater than b,
i.e. whether a and b are comparable. The special symbol ! negates the meaning the of comparison. For
example, FCMP(64,!>=,a,b) means testing whether a is less than or incomparable with b.

21.2 Integer Expressions

A reference to the ith integer register with an n-bit value is written as REG(n,i). The operators LI, LI32,
and LABEL, CONST are used to represent constant expressions of various forms. The sizes of these constants
are inferred from context.

REG : ty * reg -> rexp

LI : int -> rexp

LI32 : Word32.word -> rexp

LABEL : LabelExp.labexp -> rexp

CONST : Constant.const -> rexp

The following figure lists all the basic integer operators and their intuitive meanings. All operators
except NOTB, NEG, NEGT are binary and have the type

ty * rexp * rexp -> rexp
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The operators NOTB, NEG, NEGT have the type

ty * rexp -> rexp

ADD Twos complement addition
NEG negation
SUB Twos complement subtraction
MULS Signed multiplication
DIVS Signed division, round to zero (nontrapping)
QUOTS Signed division, round to negative infinity (nontrapping)
REMS Signed remainder (???)
MULU Unsigned multiplication
DIVU Unsigned division
REMU Unsigned remainder
NEGT signed negation, trap on overflow
ADDT Signed addition, trap on overflow
SUBT Signed subtraction, trap on overflow
MULT Signed multiplication, trap on overflow
DIVT Signed division, round to zero, trap on overflow or division by zero
QUOTT Signed division, round to negative infinity, trap on overflow or division by zero
REMT Signed remainder, trap on division by zero
ANDB bitwise and
ORB bitwise or
XORB bitwise exclusive or
NOTB ones complement
SRA arithmetic right shift
SRL logical right shift
SLL logical left shift

21.2.1 Sign and Zero Extension

Sign extension and zero extension are written using the operator CVTI2I. CVTI2I(m,SIGN_EXTEND,n,e)
sign extends the n-bit value e to an m-bit value, i.e. the n − 1th bit is of e is treated as the sign bit.
Similarly, CVTI2I(m,ZERO_EXTEND,n,e) zero extends an n-bit value to an m-bit value. If m ≤ n, then
CVTI2I(m,SIGN_EXTEND,n,e) = CVTI2I(m,ZERO_EXTEND,n,e).

datatype ext = SIGN_EXTEND | ZERO_EXTEND

CVTI2I : ty * ext * ty * rexp -> rexp

21.2.2 Conditional Move

Most new superscalar architectures incorporate conditional move instructions in their ISAs. Modern
VLIW architectures also directly support full predication. Since branching (especially with data depen-
dent branches) can introduce extra latencies in highly pipelined architectures, condtional moves should
be used in place of short branch sequences. MLTree provide a conditional move instruction COND, to make
it possible to directly express conditional moves without using branches.

COND : ty * ccexp * rexp * rexp -> rexp
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Semantically, COND(ty,cc,a,b) means to evaluate cc, and if cc evaluates to true then the value of the
entire expression is a; otherwise the value is b. Note that a and b are allowed to be eagerly evaluated. In
fact, we are allowed to evaluate to both branches, one branch, or neither 69.

Various idioms of the COND form are useful for expressing common constructs in many programming
languages. For example, MLTree does not provide a primitive construct for converting an integer value x

to a boolean value (0 or 1). But using COND, this is expressible as COND(32,CMP(32,NE,x,LI 0),LI 1,LI 0).
SML/NJ represents the boolean values true and false as machine integers 3 and 1 respectively. To convert
a boolean condition e into an ML boolean value, we can use

COND(32,e,LI 3,LI 1)

Common C idioms can be easily mapped into the COND form. For example,

• if (e1) x = y translates into MV(32,x,COND(32,e1,REG(32,y),REG(32,x)))

• x = e1;

if (e2) x = y

translates into MV(32,x,COND(32,e2,REG(32,y),e1))

• x = e1 == e2 translates into MV(32,x,COND(32,CMP(32,EQ,e1,e2),LI 1,LI 0)

• x = ! e translates into MV(32,x,COND(32,CMP(32,NE,e,LI 0),LI 1,LI 0)

• x = e ? y : z translates into MV(32,x,COND(32,e,REG(32,y),REG(32,z))), and

• x = y < z ? y : z translates into

MV(32,x,

COND(32,

CMP(32,LT,REG(32,y),REG(32,z)),

REG(32,y),REG(32,z)))

In general, the COND form should be used in place of MLTree’s branching constructs whenever possible,
since the former is usually highly optimized in various MLRISC backends.

21.2.3 Integer Loads

Integer loads are written using the constructor LOAD.

LOAD : ty * rexp * Region.region -> rexp

The client is required to specify a region70 that serves as aliasing information for the load.

69When possible.
70url: regions.html
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21.2.4 Miscellaneous Integer Operators

An expression of the LET(s,e) evaluates the statement s for its effect, and then return the value of expres-
sion e.

LET : stm * rexp -> rexp

Since the order of evaluation is MLTree operators are unspecified the use of this operator should be
severely restricted to only side-effect-free forms.

21.3 Floating Point Expressions

Floating registers are referenced using the term FREG. The ith floating point register with type n is written
as FREG(n,i).

FREG : fty * src -> fexp

Built-in floating point operations include addition (FADD), subtraction (FSUB), multiplication (FMUL),
division (FDIV), absolute value (FABS), negation (FNEG) and square root (FSQRT).

FADD : fty * fexp * fexp -> fexp

FSUB : fty * fexp * fexp -> fexp

FMUL : fty * fexp * fexp -> fexp

FDIV : fty * fexp * fexp -> fexp

FABS : fty * fexp -> fexp

FNEG : fty * fexp -> fexp

FSQRT : fty * fexp -> fexp

A special operator is provided for manipulating signs. To combine the sign of a with the magnitude of
b, we can write FCOPYSIGN(a,b)71.

FCOPYSIGN : fty * fexp * fexp -> fexp

To convert an n-bit signed integer e into an m-bit floating point value, we can write CVTI2F(m,n,e)72.

CVTI2F : fty * ty * rexp -> fexp

Similarly, to convert an n-bit floating point value e to an m-bit floating point value, we can write
CVTF2F(m,n,e)73.

CVTF2F : fty * fty * -> fexp

datatype rounding_mode = TO_NEAREST | TO_NEGINF | TO_POSINF | TO_ZERO

CVTF2I : ty * rounding_mode * fty * fexp -> rexp

FLOAD : fty * rexp * Region.region -> fexp

71What should happen if a or b is nan?
72What happen to unsigned integers?
73 What is the rounding semantics?
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21.4 Condition Expressions

Unlike languages like C, MLTree makes the distinction between condition expressions and integer expres-
sions. This distinction is necessary for two purposes:

• It clarifies the proper meaning intended in a program, and

• It makes to possible for a MLRISC backend to map condition expressions efficiently onto various
machine architectures with different condition code models. For example, architectures like the
Intel x86, Sparc V8, and PowerPC contains dedicated condition code registers, which are read from
and written to by branching and comparison instructions. On the other hand, architectures such as
the Texas Instrument C6, PA RISC, Sparc V9, and Alpha does not include dedicated condition code
registers. Conditional code registers in these architectures can be simulated by integer registers.

A conditional code register bit can be referenced using the constructors CC and FCC. Note that the
condition must be specified together with the condition code register.

CC : Basis.cond * src -> ccexp

FCC : Basis.fcond * src -> ccexp

For example, to test the Zbit of the %psr register on the Sparc architecture, we can used CC(EQ,SparcCells.psr).
The comparison operators CMP and FCMP performs integer and floating point tests. Both of these are

typed by the precision in which the test must be performed under.

CMP : ty * Basis.cond * rexp * rexp -> ccexp

FCMP : fty * Basis.fcond * fexp * fexp -> ccexp

Condition code expressions may be combined with the following logical connectives, which have the
obvious meanings.

TRUE : ccexp

FALSE : ccexp

NOT : ccexp -> ccexp

AND : ccexp * ccexp -> ccexp

OR : ccexp * ccexp -> ccexp

XOR : ccexp * ccexp -> ccexp

21.5 Statements

Statement forms in MLTree includes assignments, parallel copies, jumps and condition branches, calls
and returns, stores, sequencing, and annotation.

21.5.1 Assignments

Assignments are segregated among the integer, floating point and conditional code types. In addition, all
assignments are typed by the precision of destination register.

MV : ty * dst * rexp -> stm

FMV : fty * dst * fexp -> stm

CCMV : dst * ccexp -> stm
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21.5.2 Parallel Copies

Special forms are provided for parallel copies for integer and floating point registers. It is important to
emphasize that the semantics is that all assignments are performed in parallel.

COPY : ty * dst list * src list -> stm

FCOPY : fty * dst list * src list -> stm

21.5.3 Jumps and Conditional Branches

Jumps and conditional branches in MLTree take two additional set of annotations. The first represents
the control flow and is denoted by the type controlflow. The second represent control-dependence and
anti-control-dependence and is denoted by the type ctrl.

type controlflow = Label.label list

type ctrl = reg list

Control flow annotation is simply a list of labels, which represents the set of possible targets of the
associated jump. Control dependence annotations attached to a branch or jump instruction represents
the new definition of pseudo control dependence predicates. These predicates have no associated dynamic
semantics; rather they are used to constraint the set of potential code motion in an optimizer (more on
this later).

The primitive jumps and conditional branch forms are represented by the constructors JMP, BCC.

JMP : ctrl * rexp * controlflow -> stm

BCC : ctrl * ccexp * Label.label -> stm

In addition to JMP and BCC, there is a structured if/then/else statement.

IF : ctrl * ccexp * stm * stm -> stm

Semantically, IF(c, x, y, z) is identical to

BCC(c, x, L1)

z
JMP([], L2)

DEFINE L1

y
DEFINE L2

where L1 and L2 are new labels, as expected.
Here’s an example of how control dependence predicates are used. Consider the following MLTree

statement:

IF([p], CMP(32, NE, REG(32, a), LI 0),

MV(32, b, PRED(LOAD(32, m, ...)), p),

MV(32, b, LOAD(32, n, ...)))

In the first alternative of the IF, the LOAD expression is constrainted by the control dependence predi-
cate p defined in the IF, using the predicate constructor PRED. These states that the load is control depen-
dent on the test of the branch, and thus it may not be legally hoisted above the branch without potentially
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violating the semantics of the program. For example, semantics violation may happen if the value of m and
a is corrolated, and whenever a = 0, the address in m is not a legal address.

Note that on architectures with speculative loads, the control dependence information can be used to
guide the transformation of control dependent loads into speculative loads.

Now in constrast, the LOAD in the second alternative is not control dependent on the control depen-
dent predicate p, and thus it is safe and legal to hoist the load above the test, as in

MV(32, b, LOAD(32, n, ...));

IF([p], CMP(32, NE, REG(32, a), LI 0),

MV(32, b, PRED(LOAD(32, m, ...)), p),

SEQ []

)

Of course, such transformation is only performed if the optimizer phases think that it can benefit
performance. Thus the control dependence information does not directly specify any transformations,
but it is rather used to indicate when aggressive code motions are legal and safe.

21.5.4 Calls and Returns

Calls and returns in MLTree are specified using the constructors CALL and RET, which have the following
types.

CALL : rexp * controlflow * mlrisc * mlrisc *

ctrl * ctrl * Region.region -> stm

RET : ctrl * controlflow -> stm

The CALL form is particularly complex, and require some explanation. Basically the seven parameters
are, in order:

address of the called routine.

control flow annotation for this call. This information specifies the potential targets of this call instruc-
tion. Currently this information is ignored but will be useful for interprocedural optimizations in
the future.

definition and use These lists specify the list of potential definition and uses during the execution of the
call. Definitions and uses are represented as the type mlrisc list. The contructors for this type is:

CCR : ccexp -> mlrisc

GPR : rexp -> mlrisc

FPR : fexp -> mlrisc

definition of control and anti-control dependence These two lists specifies definitions of control and
anti-control dependence.

region annotation for the call, which summarizes the set of potential memory references during execu-
tion of the call.

The matching return statement constructor RET has two arguments. These are:

anti-control dependence This parameter represents the set of anti-control dependence predicates de-
fined by the return statement.
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control flow This parameter specifies the set of matching procedure entry points of this return. For ex-
ample, suppose we have a procedure with entry points f and f’. Then the MLTree statements

f: ...

JMP L1

f’: ...

L1: ...

RET ([], [f, f’])

can be used to specify that the return is either from the entries f or f’.

21.5.5 Stores

Stores to integer and floating points are specified using the constructors STORE and FSTORE.

STORE : ty * rexp * rexp * Region.region -> stm

FSTORE : fty * rexp * fexp * Region.region -> stm

The general form is

STORE(width, address, data, region)

Stores for condition codes are not provided.

21.5.6 Miscelleneous Statements

Other useful statement forms of MLTree are for sequencing (SEQ), defining a local label (DEFINE).

SEQ : stm list -> stm

DEFINE : Label.label -> stm

The constructor DEFINE Lhas the same meaning as executing the method defineLabel L in the stream
interface74.

21.6 Annotations

Annotations75 are used as the generic mechanism for exchanging information between different phases
of the MLRISC system, and between a compiler front end and the MLRISC back end. The following con-
structors can be used to annotate a MLTree term with an annotation:

MARK : rexp * Annotations.annotation -> rexp

FMARK : fexp * Annotations.annotation -> fexp

CCMARK : ccexp * Annotations.annotation -> ccexp

ANNOTATION : stm * Annotations.annotation -> stm

74url: stream.html
75url: annotations.html
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22 MLTree Extensions

Pattern matching over the MLTREE intermediate representation may not be sufficient to provide access
to all the registers or operations provided on a specific architecture. MLTREE extensions is a method of
extending the MLTREE intermediate language so that it is a better match for the target architecture.

22.1 Why Extensions

Pattern matching over the MLTREE intermediate representation may not be sufficient to provide access
to all the registers or operations provided on a specific architecture. MLTREE extensions is a method of
extending the MLTREE intermediate language so that it is a better match for the target architecture.

For example there may be special registers to support the increment-and-test operation on loop in-
dices, or support for complex mathematical functions such as square root, or access to hardware specific
registers such as the current register window pointer on the SPARC architecture. It is not usually possible
to write expression trees that would directly generate these instructions. Some complex operations can
be generated by performing a peephole optimization over simpler instructions, however this is not always
the most convenient or simple thing to do.

22.2 Cyclic Dependency

The easiest way to provide extensions is to parameterize the MLTREE interface with types that extend the
various kinds of trees. Thus if the type sext represented statement extensions, we might define MLTREE
statement trees as :

datatype stm

= ...

| SEXT of sext * mlrisc list * stm list

and mlrisc = GPR of rexp | FPR of fexp | CCR of ccexp

where the constructor SEXT applies the extension to a list of arguments. This approach is unsatisfac-
tory in several ways, for example, if one wanted to extend MLTREEs with for-loops, then the following
could be generated:

SEXT(FORLOOP, [GPR from, GPR to, GPR step], body)

First, the loop arguments have to be wrapped up in GPR and there is little self documentation on the
order of elements that are arguments to the for-loop. It would be better to be able to write something like:

SEXT(FORLOOP{from=f, to=t, step=s, body=b})

Where f, t, and s are rexp trees representing the loop index start, end, and step size; b is a stm list
representing the body of the loop. Unfortunately, there is a cyclic dependency as MLTREEs are defined in
terms of sext, and sext is defined in terms of MLTREEs. The usual way to deal with cyclic dependencies
is to use polymorphic type variables.
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22.3 MLTREE EXTENSION

The statement extension type sext, is now a type constructor with arity four, i.e. (’s, ’r, ’f, ’c) sx

where sx is used instead of sext, and ’s, ’r, ’f, and ’c represents MLTREE statement expressions, register
expressions, floating point expressions, and condition code expressions. Thus the for-loop extension
could be declared using something like:

datatype (’s,’r,’f,’c) sx

= FORLOOP of {from: ’r, to: ’r, step: ’r, body: ’s}

and the MLTREE interface is defined as:

signature MLTREE = sig

type (’s, ’r, ’f, ’c) sx

datatype stm =

= ...

| SEXT of sext

withtype sext = (stm, rexp, fexp, cexp) sx

end

where sext is the user defined statement extension but the type variables have been instantiated to
the final form the the MLTREE stm, rexp, fexp, and cexp components.

22.4 Compilation

There are dedicated modules that perform pattern matching over MLTREEs and emit native instructions,
and similar modules must be written for extensions. However, the same kinds of choices used in regular
MLTREE patterns must be repeated for extensions. For example, one may define an extension for the
Intel IA32 of the form:

datatype (’s,’r,’f,’c) sx = PUSHL of ’r | POPL of ’r | ...

that translate directly to the Intel push and pop instructions; the operands in each case are either
memory locations or registers, but immediates are allowed in the case of PUSHL. Considerable effort has
been invested into pattern matching the extensive set of addressing modes for the Intel architecture, and
one would like to reuse this when compiling extensions. The pattern matching functions are exposed by
a set of functions exported from the instruction selection module, and provided in the MLTREE interface.
They are:

struture I : INSTRUCTIONS

datatype reducer =

REDUCER of {
reduceRexp : rexp -> reg,

reduceFexp : fexp -> reg,

reduceCCexp : ccexp -> reg,

reduceStm : stm * an list -> unit,

operand : rexp -> I.operand,

reduceOperand : I.operand -> reg,
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addressOf : rexp -> I.addressing_mode,

emit : I.instr * an list -> unit,

instrStream : (I.instr, I.regmap, I.cellset) stream,

mltreeStream : (stm, I.regmap, mlrisc list) stream

}

where I is the native instruction set.

reduceRexp : reduces an MLTREE rexp to a register, and similarly for reduceFexp and reduceCCexp.

reduceStm : reduces an MLTREE stm to a set of instructions that implement the set of statements.

operand : reduced an MLTREE rexp into an instruction operand — usually an immediate or memory
address.

operand : moves a native operand into a register.

addressOf : reduces an MLTREE rexp into a memory address.

emit : emits an instruction together with an annotation.

instrStream : is the native instruction output stream, and

mltreeStream : is the MLTREE output stream.

Each extension must provide a function compileSext that compiles a statement extension into native
instructions. In the MLTREE_EXTENSION_COMP interface we have:

val compileSext: reducer -> stm: MLTREE.sexp, an:MLTREE.an list -> unit

The use of extensions must follow a special structure.

1. A module defining the extension type using a type constructor of arity four. Let us call this structure
ExtTy and must match the MLTREE_EXTENSION interface.

2. The extension module must be used to specialize MLTREEs.

3. A module that describes how to compile the extension must be created, and must match the MLTREE_EXTENSION_COMP
interace. This module will typically be functorized over the MLTREE interface. Let us call the result
of applying the functor, ExtComp.

4. The extension compiler must be passed as a parameter to the instruction selection module that will
invoke it whenever an extension is seen.

22.5 Multiple Extensions

Multiple extensions are handled in a similar fashion, except that the extension type used to specialize
MLTREEs is a tagged union of the individual extensions. The functor to compile the extension dispatches
to the compilation modules for the individual extensions.
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22.6 Example

Suppose you are in the process of writing a compiler for a digital signal processing(DSP) programming
language using the MLRISC framework. This wonderful language that you are developing allows the pro-
grammer to specify high level looping and iteration, and aggregation constructs that are common in DSP
applications. Furthermore, since saturated and fixed point arithmetic are common constructs in DSP
applications, the language and consequently the compiler should directly support these operators. For
simplicity, we would like to have a unified intermediate representation that can be used to directly rep-
resent high level constructs in our language, and low level constructs that are already present in MLTree.
Since, MLTree does not directly support these constructs, it seems that it is not possible to use MLRISC
for such a compiler infrastructure without substantial rewrite of the core components.

Let us suppose that for illustration that we would like to implement high level looping and aggregation
constructs such as

for i := lower bound ... upper bound

body

x := sum{i := lower bound ... upper bound} expression

together with saturated arithmetic mentioned above.
Here is a first attempt:

structure DSPMLTreeExtension

struct

structure Basis = MLTreeBasis

datatype (’s,’r,’f,’c) sx =

FOR of Basis.var * ’r * ’r * ’s
and (’s,’r,’f,’c) rx =

SUM of Basis.var * ’r * ’r * ’r
| SADD of ’r * ’r
| SSUB of ’r * ’r
| SMUL of ’r * ’r
| SDIV of ’r * ’r
type (’s,’r,’f,’c) fx = unit

type (’s,’r,’f,’c) ccx = unit

end

structure DSPMLTree : MLTreeF

(structure Extension = DSPMLTreeExtension

...

)

In the above signature, we have defined two new datatypes sx and rx that are used for representing
the DSP statement and integer expression extensions. Integer expression extensions include the high
level sum construct, and the low levels saturated arithmetic operators. The recursive type definition is
necessary to “inject” these new constructors into the basic MLTree definition.

The following is an example of how these new constructors that we have defined can be used. Suppose
the source program in our DSP language is:

for i := a ... b

{ s := sadd(s, table[i]);

}
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where sadd is the saturated add operator. For simplicity, let us also assume that all operations and ad-
dresses are in 32-bits. Then the translation of the above into our extended DSP-MLTree could be:

EXT(FOR(i, REG(32, a), REG(32, b),
MV(32, s, REXT(32, SADD(REG(32, s),

LOAD(32,

ADD(32, REG(32, table),
SLL(32, REG(32, i), LI 2)),

region))))
))

One potential short coming of our DSP extension to MLTree is that the extension does not allow any
further extensions. This restriction may be entirely satisfactory if DSP-MLTree is only used in your com-
piler applications and no where else. However, if DSP-MLTree is intended to be an extension library for
MLRISC, then we must build in the flexibility for extension. This can be done in the same way as in the
base MLTree definition, like this:

functor ExtensibleDSPMLTreeExtension

(Extension : MLTREE_EXTENSION76) =

struct

structure Basis = MLTreeBasis

structure Extension = Extension

datatype (’s,’r,’f,’c) sx =

FOR of Basis.var * ’r * ’r * ’s
| EXT of (’s,’r,’f,’c) Extension.sx

and (’s,’r,’f,’c) rx =

SUM of Basis.var * ’r * ’r * ’r
| SADD of ’r * ’r
| SSUB of ’r * ’r
| SMUL of ’r * ’r
| SDIV of ’r * ’r
| REXT of (’s,’r,’f,’c) Extension.rx

withtype

(’s,’r,’f,’c) fx = (’s,’r,’f,’c) Extension.fx

and (’s,’r,’f,’c) ccx = (’s,’r,’f,’c) Extension.ccx

end

As in MLTREE, we provide two new extension constructors EXT and REXT in the definition of DSP_MLTREE,
which can be used to further enhance the extended MLTREE language.

76file: mltree/mltree-extension.sig
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23 MLTree Utilities

The MLRISC system contains numerous utilities for working with MLTree datatypes. Some of the follow-
ing utilizes are also useful for clients use:

MLTreeUtils implements basic hashing, equality and pretty printing functions,

MLTreeFold implements a fold function over the MLTree datatypes,

MLTreeRewrite implements a generic rewriting engine,

MLTreeSimplify implements a simplifier that performs algebraic simplification and constant folding.

23.0.1 Hashing, Equality, Pretty Printing

The functor MLTreeUtils77 provides the basic utilities for hashing an MLTree term, comparing two MLTree
terms for equality and pretty printing. The hashing and comparision functions are useful for building
hash tables using MLTree datatype as keys. The signature of the functor is:

signature MLTREE_UTILS78 =

sig

structure T : MLTREE

(*

* Hashing

*)

val hashStm : T.stm -> word

val hashRexp : T.rexp -> word

val hashFexp : T.fexp -> word

val hashCCexp : T.ccexp -> word

(*

* Equality

*)

val eqStm : T.stm * T.stm -> bool

val eqRexp : T.rexp * T.rexp -> bool

val eqFexp : T.fexp * T.fexp -> bool

val eqCCexp : T.ccexp * T.ccexp -> bool

val eqMlriscs : T.mlrisc list * T.mlrisc list -> bool

(*

* Pretty printing

*)

val show : (string list * string list) -> T.printer

val stmToString : T.stm -> string

val rexpToString : T.rexp -> string

77file: mltree/mltree-utils.sml
78file: mltree/mltree-utils.sig
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val fexpToString : T.fexp -> string

val ccexpToString : T.ccexp -> string

end

functor MLTreeUtils79

(structure T : MLTREE

(* Hashing extensions *)

val hashSext : T.hasher -> T.sext -> word

val hashRext : T.hasher -> T.rext -> word

val hashFext : T.hasher -> T.fext -> word

val hashCCext : T.hasher -> T.ccext -> word

(* Equality extensions *)

val eqSext : T.equality -> T.sext * T.sext -> bool

val eqRext : T.equality -> T.rext * T.rext -> bool

val eqFext : T.equality -> T.fext * T.fext -> bool

val eqCCext : T.equality -> T.ccext * T.ccext -> bool

(* Pretty printing extensions *)

val showSext : T.printer -> T.sext -> string

val showRext : T.printer -> T.ty * T.rext -> string

val showFext : T.printer -> T.fty * T.fext -> string

val showCCext : T.printer -> T.ty * T.ccext -> string

) : MLTREE_UTILS =

The types hasher, equality, and printer represent functions for hashing, equality and pretty print-
ing. These are defined as:

type hasher =

{stm : T.stm -> word,

rexp : T.rexp -> word,

fexp : T.fexp -> word,

ccexp : T.ccexp -> word

}

type equality =

{ stm : T.stm * T.stm -> bool,

rexp : T.rexp * T.rexp -> bool,

fexp : T.fexp * T.fexp -> bool,

ccexp : T.ccexp * T.ccexp -> bool

}
type printer =

{ stm : T.stm -> string,

rexp : T.rexp -> string,

fexp : T.fexp -> string,

ccexp : T.ccexp -> string,

dstReg : T.ty * T.var -> string,

79file: mltree/mltree-utils.sml
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srcReg : T.ty * T.var -> string

}

For example, to instantiate a Utils module for our DSPMLTree, we can write:

structure U = MLTreeUtils

(structure T = DSPMLTree

fun hashSext {stm, rexp, fexp, ccexp} (FOR(i, a, b, s)) =

Word.fromIntX i + rexp a + rexp b + stm s

and hashRext {stm, rexp, fexp, ccexp} e =

(case e of

SUM(i,a,b,c) => Word.fromIntX i + rexp a + rexp b + rexp c

| SADD(a,b) => rexp a + rexp b

| SSUB(a,b) => 0w12 + rexp a + rexp b

| SMUL(a,b) => 0w123 + rexp a + rexp b

| SDIV(a,b) => 0w1245 + rexp a + rexp b

)

fun hashFext _ _ = 0w0

fun hashCCext _ _ = 0w0

fun eqSext {stm, rexp, fexp, ccexp}
(FOR(i, a, b, s), FOR(i’, a’, b’, s’)) =

i=i’ andalso rexp(a,a’) andalso rexp(b,b’) andalso stm(s,s’)

fun eqRext {stm, rexp, fexp, ccexp} (e,e’) =

(case (e,e’) of

(SUM(i,a,b,c),SUM(i’,a’,b’,c’)) =>

i=i’ andalso rexp(a,a’) andalso rexp(b,b’) andalso stm(c,c’)

| (SADD(a,b),SADD(a’,b’)) => rexp(a,a’) andalso rexp(b,b’)

| (SSUB(a,b),SSUB(a’,b’)) => rexp(a,a’) andalso rexp(b,b’)

| (SMUL(a,b),SMUL(a’,b’)) => rexp(a,a’) andalso rexp(b,b’)

| (SDIV(a,b),SDIV(a’,b’)) => rexp(a,a’) andalso rexp(b,b’)

| _ => false

)

fun eqFext _ _ = true

fun eqCCext _ _ = true

fun showSext {stm, rexp, fexp, ccexp, dstReg, srcReg}
(FOR(i, a, b, s)) =

"for("^dstReg i^":="^rexp a^".."^rexp b^")"^stm s

fun ty t = "."^Int.toString t

fun showRext {stm, rexp, fexp, ccexp, dstReg, srcReg} e =

(case (t,e) of

SUM(i,a,b,c) =>

"sum"^ty t^"("^dstReg i^":="^rexp a^".."^rexp b^")"^rexp c

| SADD(a,b) => "sadd"^ty t^"("rexp a^","^rexp b^")"

| SSUB(a,b) => "ssub"^ty t^"("rexp a^","^rexp b^")"

| SMUL(a,b) => "smul"^ty t^"("rexp a^","^rexp b^")"

| SDIV(a,b) => "sdiv"^ty t^"("rexp a^","^rexp b^")"

)

fun showFext _ _ = ""
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fun showCCext _ _ = ""

)

23.0.2 MLTree Fold

The functor MLTreeFold80 provides the basic functionality for implementing various forms of aggregation
function over the MLTree datatypes. Its signature is

signature MLTREE_FOLD81 =

sig

structure T : MLTREE

val fold : ’b folder -> ’b folder

end

functor MLTreeFold82

(structure T : MLTREE

(* Extension mechnism *)

val sext : ’b T.folder -> T.sext * ’b -> ’b
val rext : ’b T.folder -> T.ty * T.rext * ’b -> ’b
val fext : ’b T.folder -> T.fty * T.fext * ’b -> ’b
val ccext : ’b T.folder -> T.ty * T.ccext * ’b -> ’b
) : MLTREE_FOLD =

The type folder is defined as:

type ’b folder =

{ stm : T.stm * ’b -> ’b,
rexp : T.rexp * ’b -> ’b,
fexp : T.fexp * ’b -> ’b,
ccexp : T.ccexp * ’b -> ’b

}

23.0.3 MLTree Rewriting

The functor MLTreeRewrite83 implements a generic term rewriting engine which is useful for performing
various transformations on MLTree terms. Its signature is

signature MLTREE_REWRITE84 =

sig

structure T : MLTREE

val rewrite :

(* User supplied transformations *)

{ rexp : (T.rexp -> T.rexp) -> (T.rexp -> T.rexp),

80file: mltree/mltree-fold.sml
81file: mltree/mltree-fold.sig
82file: mltree/mltree-fold.sml
83file: mltree/mltree-rewrite.sml
84file: mltree/mltree-rewrite.sig
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fexp : (T.fexp -> T.fexp) -> (T.fexp -> T.fexp),

ccexp : (T.ccexp -> T.ccexp) -> (T.ccexp -> T.ccexp),

stm : (T.stm -> T.stm) -> (T.stm -> T.stm)

} -> T.rewriters

end

functor MLTreeRewrite85

(structure T : MLTREE

(* Extension *)

val sext : T.rewriter -> T.sext -> T.sext

val rext : T.rewriter -> T.rext -> T.rext

val fext : T.rewriter -> T.fext -> T.fext

val ccext : T.rewriter -> T.ccext -> T.ccext

) : MLTREE_REWRITE =

The type rewriter is defined in signature MLTREE86 as:

type rewriter =

{ stm : T.stm -> T.stm,

rexp : T.rexp -> T.rexp,

fexp : T.fexp -> T.fexp,

ccexp : T.ccexp -> T.ccexp

}

23.0.4 MLTree Simplifier

The functor MLTreeSimplify87 implements algebraic simplification and constant folding for MLTree. Its
signature is:

signature MLTREE_SIMPLIFIER88 =

sig

structure T : MLTREE

val simplify :

addressWidth : int -> T.simplifier

end

functor MLTreeSimplifier89

(structure T : MLTREE

(* Extension *)

val sext : T.rewriter -> T.sext -> T.sext

val rext : T.rewriter -> T.rext -> T.rext

val fext : T.rewriter -> T.fext -> T.fext

val ccext : T.rewriter -> T.ccext -> T.ccext

) : MLTREE_SIMPLIFIER =

85file: mltre/mltree-rewrite.sml
86file: mltree/mltree.sig
87file: mltree/mltree-simplify.sml
88file: mltree/mltree-simplify.sig
89file: mltree/mltree-simplify.sml
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Where type simplifier is defined in signature MLTREE90 as:

type simplifier =

{ stm : T.stm -> T.stm,

rexp : T.rexp -> T.rexp,

fexp : T.fexp -> T.fexp,

ccexp : T.ccexp -> T.ccexp

}

90file: mltree/mltree.sig
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24 Instruction Selection

Instruction selection modules are reponsible for translating MLTree91 statements into a flowgraph con-
sisting of target machine instructions. MLRISC decomposes this complex task into three components:

Instruction selection modules which are responsible for mapping a sequence of MLTree statements into
a sequence target machine code,

Flowgraph builders which are responsible for constructing the graph representation of the program
from a sequence of target machine instructions, and

Client Extender which are responsible for compiling MLTree extensions (see also Section 22).

By detaching these components, extra flexiblity is obtained. For example, the MLRISC system uses two
different internal representations. The first, cluster92, is a light-weight representation which is suitable
for simple compilers without extensive optimizations; the second, MLRISC IR93, is a heavy duty repre-
sentation which allows very complex transformations to be performed. Since the flowgraph builders are
detached from the instruction selection modules, the same instruction selection modules can be used for
both representations.

For consistency, the three components communicate to each other via the same stream94 interface.

24.1 Interface Definition

All instruction selection modules satisfy the following signature:

signature MLTREECOMP95 =

sig

structure T : MLTREE96

structure I : INSTRUCTIONS97

structure C : CELLS98

sharing T.LabelExp = I.LabelExp99

sharing I.C = C

type instrStream = (I.instruction,C.regmap,C.cellset) T.stream

type mltreeStream = (T.stm,C.regmap,T.mlrisc list) T.stream

val selectInstructions : instrStream -> mltreeStream

end

Intuitively, this signature states that the instruction selection module returns a function that can trans-
form a stream of MLTree statements (mltreeStream) into a stream of instructions of the target machine
(instrStream).

91url: mltree.html
92url: cluster.html
93url: mlrisc-ir.html
94url: stream.html
95file: mltree/mltreecomp.sig
96url: mltree.html
97url: instructions.html
98url: cells.html
99url: labelexp.html
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24.1.1 Compiling Client Extensions

Compilation of client extensions to MLTREE is controlled by the following signature:

signature MLTREE_EXTENSION_COMP100 =

sig

structure T : MLTREE101

structure I : INSTRUCTIONS102

structure C : CELLS103

sharing T.LabelExp = I.LabelExp104

sharing I.C = C

type reducer =

(I.instruction,C.regmap,C.cellset,I.operand,I.addressing_mode) T.reducer

val compileSext : reducer -> {stm:T.sext, an:T.an list} -> unit

val compileRext : reducer -> {e:T.ty * T.rext, rd:C.cell, an:T.an list} -> unit

val compileFext : reducer -> {e:T.ty * T.fext, fd:C.cell, an:T.an list} -> unit

val compileCCext : reducer -> {e:T.ty * T.ccext, ccd:C.cell, an:T.an list} -> unit

end

Methods compileSext, compileRext, etc. are callbacks that are responsible for compiling MLTREE
extensions. The arguments to these callbacks have the following meaning:

reducer The first argument is always the reducer, which contains internal methods for translating ML-
Tree constructs into machine code. These methods are supplied by the instruction selection mod-
ules.

an This is a list of annotations that should be attached to the generated code.

ty, fty These are the types of the extension construct.

stm, e This are the extension statement and expression.

rd, fd, cd These are the target registers of the expression extension, i.e. the callback should generate the
appropriate code for the expression and writes the result to this target.

For example, when an instruction selection encounters a FOR(i, a, b, s) statement extension defined in
Section 22, the callback

compileStm reducer { stm=FOR(i, a, b, s), an=an }

is be involved.
The reducer type is defined in the signature MLTREE105 and has the following type:

100file: mltree/mltreecomp.sig
101url: mltree.html
102url: instructions.html
103url: cells.html
104url: labelexp.html
105file: mltree/mltree.sig
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datatype reducer =

REDUCER of

{ reduceRexp : rexp -> reg,

reduceFexp : fexp -> reg,

reduceCCexp : ccexp -> reg,

reduceStm : stm * an list -> unit,

operand : rexp -> I.operand,

reduceOperand : I.operand -> reg,

addressOf : rexp -> I.addressing_mode,

emit : I.instruction * an list -> unit,

instrStream : (I.instruction,C.regmap,C.cellset) stream,

mltreeStream : (stm,C.regmap,mlrisc list) stream

}

The components of the reducer are

reduceRexp, reduceFexp, reduceCCexp These functions take an expression of type integer, floating point
and condition code, translate them into machine code and return the register that holds the result.

reduceStm This function takes an MLTree statement and translates it into machine code. it also takes a
second argument, which is the list of annotations that should be attached to the statement.

operand This function translates an rexp into an operand of the machine architecture.

reduceOperand This function takes an operand of the machine architecture and reduces it into an inte-
ger register.

addressOf This function takes an rexp, treats it as an address expression and translates it into the appro-
priate addresssing_mode of the target architecture.

emit This function emits an instruction with attached annotations to the instruction stream

instrStream, mltreeStream These are the instruction stream and mltree streams that are currently bound
to the extender.

24.1.2 Extension Example

Here is an example of how the extender mechanism can be used, using the DSP_MLTREE extensions defined
in Section 22. We need supply two new functions, compileDSPStm for compiling the FOR construct, and
compileDSPRexp for compiling the SUM, and saturated arithmetic instructions.

The first function, compileDSPStm, is generic and simply translates the FOR loop into the appropriate
branches. Basically, we will translate FOR(i, start, stop, body) into the following loop in pseudo code:

limit = stop
i = start
goto test

loop: body
i = i + 1

test: if i <= limit goto loop

This transformation can be implemented as follows:
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functor DSPMLTreeExtensionComp

(structure I : DSP_INSTRUCTION_SET

structure T : DSP_MLTREE

sharing I.LabelExp = T.LabelExp

) =

struct

structure I = I

structure T = T

structure C = I.C

type reducer =

(I.instruction,C.regmap,C.cellset,I.operand,I.addressing_mode) T.reducer

fun mark(s, []) = s

| mark(s, a::an) = mark(ANNOTATION(s, a), an)

fun compileSext (REDUCER{reduceStm, ...})
{stm=FOR(i, start, stop, body), an} =

let val limit = C.newReg()

val loop = Label.newLabel ""

val test = Label.newLabel ""

in reduceStm(

SEQ[MV(32, i, start),

MV(32, limit, stop),

JMP([], [LABEL(LabelExp.LABEL test)], []),

LABEL loop,

body,

MV(32, i, ADD(32, REG(32, i), LI 1),

LABEL test,

mark(BCC([],

CMP(32, LE, REG(32, i), REG(32, limit)),

loop),

an),

]

)

end

...

In this transformation, we have chosen to proprogate the annotation an into the branch constructor.
Assuming the target architecture that we are translated into contains saturated arithmetic instructions

SADD, SSUB, SMUL and SDIV, the DSP extensions SUM and saturated arithmetic expressions can be handled
as follows.

fun compileRext (REDUCER{reduceStm, reduceRexp, emit, ...})
{ty, e, rd, an} =

(case (ty,e) of

(_,T.SUM(i, a, b, exp)) =>

reduceStm(SEQ[MV(ty, rd, LI 0),

FOR(i, a, b,
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mark(MV(ty, rd, ADD(ty, REG(ty, rd), exp)), an))

]

)

| (32,T.SADD(x,y)) => emit(I.SADD{r1=reduceRexp x,r2=reduceRexp y,rd=rd},an)
| (32,T.SSUB(x,y)) => emit(I.SSUB{r1=reduceRexp x,r2=reduceRexp y,rd=rd},an)
| (32,T.SMUL(x,y)) => emit(I.SMUL{r1=reduceRexp x,r2=reduceRexp y,rd=rd},an)
| (32,T.SDIV(x,y)) => emit(I.SDIV{r1=reduceRexp x,r2=reduceRexp y,rd=rd},an)
| ...

)

fun compileFext _ _ = ()

fun compileCCext _ _ = ()

end

Note that in this example, we have simply chosen to reduce a SUM expression into the high level FOR
construct. Clearly, other translation schemes are possible.

24.2 Instruction Selection Modules

Here are the actual code for the various back ends:

1. Sparc106

2. PA-RISC107

3. Alpha108

4. Power PC109

5. X86110

6. C6xx

106file: sparc/mltree/sparc.sml
107file: hppa/mltree/hppa.sml
108file: alpha/mltree/alpha.sml
109file: ppc/mltree/ppc.sml
110file: x86/mltree/x86.sml
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25 Assemblers

25.0.1 Overview

Assemblers in MLRISC satisfy the signature INSTRUCTION EMITTER111, which is defined as:

signature INSTRUCTION_EMITTER =

sig

structure I : INSTRUCTIONS112

structure C : CELLS113

structure S : INSTRUCTION_STREAM114

structure P : PSEUDO_OPS115

sharing I.C = C

sharing S.P = P

val makeStream : Annotations.annotations ->

((int -> int) -> I.instruction -> unit,

unit,’b,’c,’d,’e) S.stream

end

The function makeStream returns an instruction stream. By default the output is bound to the stream
AsmStream.asmOutStream defined in the structure AsmStream116 at creation time.

The structure AsmStream satisfy the following signature.

signature ASM_STREAM = sig

val asmOutStream : TextIO.outstream ref

val withStream : TextIO.outstream -> (’a -> ’b) -> ’a -> ’b
end

25.0.2 Redirecting the Output

It is possible to redirect the output of an instruction stream. For example, the following statement

val asm = makeStream []

binds the output of asm to AsmStream.asmOutStream, which by default is just TextIO.stdOut. On the
other hand, the statement

val asm = AsmStream.withStream mystream makeStream []

binds the output of asm to mystream.

111file: emit/instruction-emitter.sig
112url: instructions.html
113url: cells.html
114url: streams.html
115url: pseudo-ops.html
116file: emit/asmStream.sml
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25.0.3 More Details

Assemblers are automatically generated by the MDGen117 tool. Some specific generated assemblers are
listed below:

1. Sparc118

2. Hppa119

3. Alpha120

4. Power PC121

5. X86122

117url: mlrisc-md.html
118file: sparc/emit/sparcAsm.sml
119file: hppa/emit/hppaAsm.sml
120file: alpha/emit/alphaAsm.sml
121file: ppc/emit/ppcAsm.sml
122file: x86/emit/x86Asm.sml
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26 Machine Code Emitters

26.0.1 Overview

MLRISC lets the client to directly emit machine code and bypass the traditional assembly mechanism.
Machine code emitters in MLRISC satisfy the signature INSTRUCTION EMITTER123, which is defined as:

signature INSTRUCTION_EMITTER =

sig

structure I : INSTRUCTIONS124

structure C : CELLS125

structure S : INSTRUCTION_STREAM126

structure P : PSEUDO_OPS127

sharing I.C = C

sharing S.P = P

val makeStream : Annotations.annotations ->

((int -> int) -> I.instruction -> unit,

unit,’b,’c,’d,’e) S.stream

end

The function makeStream returns an instruction stream. The output, a stream of bytes, is direct to the
client supplied structure which satisfy the CODE STRING128 interface. This signature is defined as follows:

signature CODE_STRING = sig

type code_string

val init : int -> unit

val update : int * Word8.word -> unit

val getCodeString : unit -> code_string

end

26.0.2 More Details

Machine code emitters are automatically generated by the MDGen129 tool. Some specific generated emit-
ters are listed below:

1. Sparc130

2. Hppa131

123file: emit/instruction-emitter.sig
124url: instructions.html
125url: cells.html
126url: streams.html
127url: pseudo-ops.html
128file: emit/code-string.sig
129url: mlrisc-md.html
130file: sparc/emit/sparcMC.sml
131file: hppa/emit/hppaMC.sml
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3. Alpha132

4. Power PC133

5. X86134

132file: alpha/emit/alphaMC.sml
133file: ppc/emit/ppcMC.sml
134file: x86/emit/x86MC.sml
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27 Delay Slot Filling

27.1 Overview

Superscalar architectures such as the Sparc, MIPS, and PA-RISC contain delayed branch and/or load in-
structions. Delay slot filling is necessary task of the back end to keep the instruction pipelines busy. To
accomodate the intricate semantics of branch delay slot in various architectures, MLRISC uses the fol-
lowing very general framework for dealing with delayed instructions.

Instruction representation To make it easy to deal with instruction with delay slot, MLRISC allow the
following extensions to instruction representations.

• Instructions with delay slot may have a nop flag. When this flag is true the delay slot is assumed
to be filled with a NOP instruction.

• Instructions with delay slots that can be nullified may have a nullified flag. When this flag is
true the branch delay slot is assumed to be nullified.

Nullification semantics Unfortunately, nullification semantics in architectures vary. In general, MLRISC
allows the following additional nullification characteristics to be specified.

• Nullification can be specified as illegal; this is needed because some instructions can not be
nullified

• When nullification is enabled, the semantics of the delay slot instruction may depend on the
direction of the branch, and whether a conditional test succeeds.

• Certain class of instructions may be declared to be illegal to fit into certain class of delay slots.

For example, conditional branch instructions on the Sparc are defined as follows:

Bicc of {b:branch, a:bool, label:Label.label, nop:bool}

asm: ‘‘b<b><a>\t<label><nop>’’

padding: nop = true

nullified: a = true and (case b of I.BA => false | _ => true)

delayslot candidate: false

where a is annul flag and nop is the nop flag (see the Sparc machine description135). A constructor
term

Bicc{b=BE, a=true, label=label, nop=true}

denotes the instruction sequence

be,a label

nop

while

Bicc{b=BE, a=false, label=label, nop=false}

denotes

be label

135file: sparc/sparc.md
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27.2 The Interface

Architecture information about how delay slot filling is to be performed is described in the signature
DELAY SLOT PROPERTIES136.

signature DELAY_SLOT_PROPERTIES =

sig

structure I : INSTRUCTIONS

datatype delay_slot =

D_NONE | D_ERROR | D_ALWAYS

| D_TAKEN | D_FALLTHRU

val delaySlotSize : int

val delaySlot : { instr : I.instruction, backward : bool } ->

{ n : bool,

nOn : delay_slot,

nOff : delay_slot,

nop : bool

}
val enableDelaySlot :

{instr : I.instruction, n:bool, nop:bool} -> I.instruction

val conflict :

{regmap:int->int,src:I.instruction,dst:I.instruction} -> bool

val delaySlotCandidate :

{ jmp : I.instruction, delaySlot : I.instruction } -> bool

val setTarget : I.instruction * Label.label -> I.instruction

end

The components of this signature are:

delay slot This datatype describes properties related to a delay slot.

D NONE This indicates that no delay slot is possible.

D ERROR This indicates that it is an error

D ALWAYS This indicates that the delay slot is always active

D TAKEN This indicates that the delay slot is only active when branch is taken

D FALLTHRU This indicates that the delay slot is only active when branch is not taken

delaySlotSize This is size of delay slot in bytes.

delaySlot This method takes an instruction instr and a flag indicating whether the branch is backward,
and returns the delay slot properties of an instruction. The properties is described by four fields.

n : bool This bit is if the nullified bit in the instruction is currently set.

nOn : delay slot This field indicates the delay slot type when the instruction is nullified.

nOff : delay slot This field indiciates the delay slot type when the instruction is not nullified.

136file: backpatch/delaySlotProps.sig
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nop : bool This bit indicates whether there is an implicit padded nop.

enableDelaySlot This method set the nullification and nop flags of an instruction.

conflict This method checks whether there are any conflicts between instruction src and dst.

delaySlotCandidate This method checks whether instruction delaySlot is within the class of instruc-
tions that can fit within the delay slot of instruction jmp.

setTarget This method changes the branch target of an instruction.

27.2.1 Examples

For example,

delaySlot{instr=instr, backward=true} =

{n=true, nOn=D_ERROR, nOff=D_ALWAYS, nop=true}

means that the instruction nullification bit is on, the the nullification cannot be turned off, delay slot is
always active (when not nullified), and there is currently an implicit padded nop.

delaySlot{instr=instr, backward=false} =

{n=false, nOn=D_NONE, nOff=D_TAKEN, nop=false}

means that the nullification bit is off, the delay slot is inactive when the nullification bit is off, the delay
slot is only active when the (forward) branch is taken when instr is not-nullified, and there is no implic-
itly padded nop.

delaySlot{instr=instr, backward=true} =

{n=true, nOn=D_TAKEN, nOff=D_ALWAYS, nop=true}

means that the nullification bit is on, the delay slot is active on a taken (backward) branch when the
nullification bit is off, the delay slot is always active when instr is not-nullified, and there is currently an
implicitly padded nop.
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28 Span Dependency Resolution

The span dependency resolution phase is used to resolve the values of client defined constants137 and
labels138 in a program. An instruction whose immediate operand field contains a constant or label ex-
pression139 which is too large is rewritten into a sequence of instructions to compute the same result.
Similarly, short branches referencing labels that are too far are rewritten into the long form. For architec-
tures that require the filling of delay slots, this is performed at the same time as span depedency resolu-
tion, to ensure maximum benefit results.

28.0.1 The Interface

The signature SDI_JUMPS describes architectural information about span dependence resolution.

signature SDI_JUMPS140 = sig

structure I : INSTRUCTIONS141

structure C : CELLS142

sharing I.C = C

val branchDelayedArch : bool

val isSdi : I.instruction -> bool

val minSize : I.instruction -> int

val maxSize : I.instruction -> int

val sdiSize : I.instruction * (C.cell -> C.cell)

* (Label.label -> int) * int -> int

val expand : I.instruction * int * int -> I.instruction list

end

The components in this interface are:

branchDelayedArch A flag indicating whether the architecture contains delay slots. For example, this
would be true on the MIPS, Sparc, PA RISC; but would be false on the x86 and on the Alpha.

isSdi This function returns true if the instruction is span dependent, i.e. its size depends either on some
unresolved constants, or on its position in the code stream.

sdiSize This function takes a span dependent instruction, a regmap143, a mapping from labels to code
stream position, and its current code stream position and returns the size of its expansion in bytes.

expand This function takes a span dependent instruction, its size, and its location and return its expan-
sion.

The signature BBSCHED is the signature of the phase that performs span depedennce resolution and
code generation.

137url: constants.html
138url: labels.html
139url: labexp.html
140file: backpatch/sdi-jumps.sig
141url: instructions.html
142url: cells.html
143url: regmap.html
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signature BBSCHED144 = sig

structure F : FLOWGRAPH145

val bbsched : F.cluster -> unit

val finish : unit -> unit

val cleanUp : unit -> unit

end

28.0.2 The Modules

Three different functors are present in the MLRISC system for performing span dependence resolution
and code generator. Functor BBSched2 is the simplest one, which does not perform delay slot filling.

functor BBSched2

(structure Flowgraph : FLOWGRAPH146

structure Jumps : SDI_JUMPS147

structure Emitter : INSTRUCTION_EMITTER148

sharing Emitter.P = Flowgraph.P

sharing Flowgraph.I = Jumps.I = Emitter.I

): BBSCHED

Functor SpanDependencyResolution performs both span dependence resolution and delay slot filling
at the same time.

functor SpanDependencyResolution

(structure Flowgraph : FLOWGRAPH149

structure Emitter : INSTRUCTION_EMITTER150

structure Jumps : SDI_JUMPS151

structure DelaySlot : DELAY_SLOT_PROPERTIES152

structure Props : INSN_PROPERTIES153

sharing Flowgraph.P = Emitter.P

sharing Flowgraph.I = Jumps.I = DelaySlot.I = Props.I = Emitter.I

) : BBSCHED

Finally, functor BackPatch is a span dependency resolution module specially written for the x86154

architecture.

functor BackPatch

(structure CodeString : CODE_STRING155

144file: backpatch/bbsched.sig
145url: cluster.html
146file: cluster/flowgraph.sig
147file: backpatch/sdi-jumps.sig
148url: mc.html
149file: cluster/flowgraph.sig
150url: mc.html
151file: backpatch/sdi-jumps.sig
152url: delayslots.html
153file: instructions/insnProps.sig
154url: x86.html
155file: emit/code-string.sig
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structure Jumps: SDI_JUMPS156

structure Props : INSN_PROPERTIES157

structure Emitter : MC_EMIT158

structure Flowgraph : FLOWGRAPH159

structure Asm : INSTRUCTION_EMITTER160

sharing Emitter.I = Jumps.I = Flowgraph.I = Props.I = Asm.I) : BBSCHED

156file: backpatch/sdi-jumps.sig
157file: instructions/insnProps.sig
158file: backpatch/vlBatchPatch.sig
159url: cluster.html
160url: asm.html
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29 The MLRISC Machine Description Language

29.1 Overview

MDGen is a machine description language is designed to automate various mundane and error prone
tasks in developing a back-end for MLRISC. Currently, to target a new architecture the programmer must
provide the following set of modules written in Standard ML:

• CELLS161 – the properties of the register set and (some part of) memory hierarchy.

• INSTRUCTIONS162 – the concrete instruction set representation.

• INSNS PROPERTIES163 – properties of the instructions.

• SHUFFLE164 – methods to emit linearized code from parallel copies.

• ASSEMBLER165 – the assembler

• MC166 – the machine code emitter

• SDI JUMPS167 – methods for resolving span-dependent instructions.

• DELAY SLOTS PROPERTIES168 – machine properties for delay slot filling, if a machine architecture
contains branch delay slots or load delay slots.

• SSA PROPERTIES169 – semantics properties for performing optimizations in Static Single Assignment
form.

In general, writing a backend is tedious even with SML’s abstraction capabilities. Furthermore, the
machine description is procedural in natural and must be checked by hand.

29.2 What is in MDGen?

The MDGen tool simplifies the process of developing a new MLRISC backend. MDGen provides the fol-
lowing:

• A representation description language for specifying the machine encoding of the instruction set,
using an extension of ML’s algebraic datatype facility.

• A semantics description language for specifying the abstract semantics of the instructions.

161file: instructions/cells.sig
162file: instructions/instructions.sig
163file: instructions/insnProps.sig
164file: instructions/shuffle.sig
165file: emit/instruction-emitter.sig
166file: emit/instruction-emitter.sig
167file: ../backpatch/sdi-jumps.sig
168file: ../backpatch/delaySlotProps.sig
169file: ../SSA/ssaProps.sig
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Both sub-languages are based on ML’s syntax and semantics, so they should be readily familiar to all
MLRISC users.

A backend developer can specify a new machine architecture using the MDGen language, and in turn,
the MDGen tool generates ML modules that are required by the MLRISC system.

The basic concepts of MDGen are inspired largely from Norman Ramsey’s New Jersey Machine Code
Tool Kit170 and Ramsey and Davidson’s Lambda RTL171.

29.3 A Sample Description

Here we present a sample MDGen description, using the Alpha as an example. We highlight all keywords
in the MDGen language in. A typical machine description is structured as follows:

architecture Alpha =

struct

name "Alpha"

superscalar

little endian

lowercase assembly

end

29.3.1 Storage cells and locations.
29.3.3 Instruction encoding formats specification.
29.3.2 Instruction definition.
Here, we declare that the Alpha is a superscalar machine using little endian encoding. Furthermore,

assembly output should be displayed in lowercase– this is for personal esthetic reasons only; most as-
semblers are case insensitive.

29.3.1 Specifying Storage Cells and Locations

A cell is an abstract resource location for holding data values. On typical machines, the types of cells
include general purpose registers, floating point registers, and condition code registers.

The storage declaration defines different cellkinds. MLRISC requires the cellkinds GP, FP, CC to be
defined. These are the cellkinds for general purpose registers, floating point registers and condition code
registers.

In the following sequence of declarations, a few things are defined:

• The cellkinds GP, FP, CC are defined. Furthermore, the cellkinds MEM, CTRL, which stand for mem-
ory and control (dependence), are also implicitly defined.

• The assembly as clauses specify how a specific cell type is to be displayed. Here, we specify that
register 30, the stack pointer, should be displayed specially as $sp.

• The in cellset clause, when attached, tells MDGen that the associated cellkind should be part of
the cellset . The clause in cellset GP tells MDGen that the a cell of type CC should be treated the
same as a GP

• The locations declarations define a few abbreviations: stackptrR is the stack pointer, asmTmpR is
the assembly temporary, fasmTmp is the floating point assembly temporary etc.

170url: http://www.cs.virginia.edu/ nr/toolkit
171url: http://www.cs.virginia.edu/zephyr/csdl/lrtlindex.html

cellset.html
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storage

GP = 32 cells of 64 bits in cellset called "register"

assembly as (fn 30 => "$sp"

| r => "$"^Int.toString r)

| FP = 32 cells of 64 bits in cellset called "floating point register"

assembly as (fn f => "f"^Int.toString f)

| CC = cells of 64 bits in cellset GP called "condition code register"

assembly as "cc"

locations

stackptrR = $GP[30]

and asmTmpR = $GP[28]

and fasmTmp = $FP[30]

and GPReg r = $GP[r]

and FPReg f = $GP[f]

29.3.2 Specifying the Representation of Instructions

structure Instruction =

struct

datatype ea =

Direct of $GP

| FDirect of $FP

| Displace of base: $GP, disp:int

datatype operand =

REGop of $GP ‘‘<GP>’’ (GP)

| IMMop of int ‘‘<int>’’

| HILABop of LabelExp.labexp ‘‘hi(<emit_labexp labexp>)’’

| LOLABop of LabelExp.labexp ‘‘lo(<emit_labexp labexp>)’’

| LABop of LabelExp.labexp ‘‘<emit_labexp labexp>’’

| CONSTop of Constant.const ‘‘<emit_const const>’’

(*

* When I say ! after the datatype name XXX, it means generate a

* function emit_XXX that converts the constructors into the corresponding

* assembly text. By default, it uses the same name as the constructor,

* but may be modified by the lowercase/uppercase assembly directive.

*

*)

datatype branch! =

BR 0x30

| BSR 0x34

| BLBC 0x3

| BEQ 0x39 | BLT 0x3a | BLE 0x3b

| BLBS 0x3c | BNE 0x3d | BGE 0x3e

| BGT 0x3f

datatype fbranch! =
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FBEQ 0x31 | FBLT 0x32

| FBLE 0x33 | FBNE 0x35

| FBGE 0x36 | FBGT 0x37

datatype load! = LDL 0x28 | LDL_L 0x2A | LDQ 0x29 | LDQ_L 0x2B | LDQ_U 0x0B

datatype store! = STL 0x2C | STQ 0x2D | STQ_U 0x0F

datatype fload[0x20..0x23]! = LDF | LDG | LDS | LDT

datatype fstore[0x24..0x27]! = STF | STG | STS | STT

(* non-trapping opcodes *)

datatype operate! = (* table C-5 *)

ADDL (0wx10,0wx00) | ADDQ (0wx10,0wx20)

| CMPBGE(0wx10,0wx0f) | CMPEQ (0wx10,0wx2d)

| CMPLE (0wx10,0wx6d) | CMPLT (0wx10,0wx4d) | CMPULE (0wx10,0wx3d)

| CMPULT(0wx10,0wx1d) | SUBL (0wx10,0wx09)

| SUBQ (0wx10,0wx29)

| S4ADDL(0wx10,0wx02) | S4ADDQ (0wx10,0wx22) | S4SUBL (0wx10,0wx0b)

| S4SUBQ(0wx10,0wx2b) | S8ADDL (0wx10,0wx12) | S8ADDQ (0wx10,0wx32)

| S8SUBL(0wx10,0wx1b) | S8SUBQ (0wx10,0wx3b)

| AND (0wx11,0wx00) | BIC (0wx11,0wx08) | BIS (0wx11,0wx20)

| CMOVEQ(0wx11,0wx24) | CMOVLBC(0wx11,0wx16) | CMOVLBS(0wx11,0wx14)

| CMOVGE(0wx11,0wx46) | CMOVGT (0wx11,0wx66) | CMOVLE (0wx11,0wx64)

| CMOVLT(0wx11,0wx44) | CMOVNE (0wx11,0wx26) | EQV (0wx11,0wx48)

| ORNOT (0wx11,0wx28) | XOR (0wx11,0wx40)

| EXTBL (0wx12,0wx06) | EXTLH (0wx12,0wx6a) | EXTLL(0wx12,0wx26)

| EXTQH (0wx12,0wx7a) | EXTQL (0wx12,0wx36) | EXTWH(0wx12,0wx5a)

| EXTWL (0wx12,0wx16) | INSBL (0wx12,0wx0b) | INSLH(0wx12,0wx67)

| INSLL (0wx12,0wx2b) | INSQH (0wx12,0wx77) | INSQL(0wx12,0wx3b)

| INSWH (0wx12,0wx57) | INSWL (0wx12,0wx1b) | MSKBL(0wx12,0wx02)

| MSKLH (0wx12,0wx62) | MSKLL (0wx12,0wx22) | MSKQH(0wx12,0wx72)

| MSKQL (0wx12,0wx32) | MSKWH (0wx12,0wx52) | MSKWL(0wx12,0wx12)

| SLL (0wx12,0wx39) | SRA (0wx12,0wx3c) | SRL (0wx12,0wx34)

| ZAP (0wx12,0wx30) | ZAPNOT (0wx12,0wx31)

| MULL (0wx13,0wx00) | MULQ (0wx13,0wx20)

| UMULH (0wx13,0wx30)

| SGNXL "addl" (0wx10,0wx00) (* same as ADDL *)

(* conditional moves *)

datatype pseudo_op! = DIVL | DIVLU

datatype operateV! = (* table C-5 opc/func *)

ADDLV (0wx10,0wx40) | ADDQV (0wx10,0wx60)

| SUBLV (0wx10,0wx49) | SUBQV (0wx10,0wx69)

| MULLV (0wx13,0wx00) | MULQV (0wx13,0wx60)



29.3 A Sample Description 94

datatype foperate! = (* table C-6 *)

CPYS (0wx17,0wx20) | CPYSE (0wx17,0wx022) | CPYSN (0wx17,0wx021)

| CVTLQ (0wx17,0wx010) | CVTQL (0wx17,0wx030) | CVTQLSV (0wx17,0wx530)

| CVTQLV (0wx17,0wx130)

| FCMOVEQ (0wx17,0wx02a) | FCMOVEGE (0wx17,0wx02d) | FCMOVEGT (0wx17,0wx02f)

| FCMOVLE (0wx17,0wx02e) | FCMOVELT (0wx17,0wx02c) | FCMOVENE (0wx17,0wx02b)

| MF_FPCR (0wx17,0wx025) | MT_FPCR (0wx17,0wx024)

(* table C-7 *)

| CMPTEQ (0wx16,0wx0a5) | CMPTLT (0wx16,0wx0a6) | CMPTLE (0wx16,0wx0a7)

| CMPTUN (0wx16,0wx0a4)

datatype foperateV! =

ADDSSUD 0wx5c0

| ADDTSUD 0wx5e0

| CVTQSC 0wx3c

| CVTQTC 0wx3e

| CVTTSC 0wx2c

| CVTTQC 0wx2f

| DIVSSUD 0wx5ec

| DIVTSUD 0wx5c3

| MULSSUD 0wx5c2

| MULTSUD 0wx5e2

| SUBSSUD 0wx5c1

| SUBTSUD 0wx5e1

datatype osf_user_palcode! =

BPT 0x80 | BUGCHK 0x81 | CALLSYS 0x83

| GENTRAP 0xaa | IMB 0x86 | RDUNIQUE 0x9e | WRUNIQUE 0x9f

end (* Instruction *)

29.3.3 Specifying the Instruction Encoding Formats

The Alpha has very simple instruction encoding formats.

instruction formats 32 bits

Memoryopc:6, ra:5, rb:GP 5, disp: signed 16 (* p3-9 *)

(* derived from Memory *)

| LoadStoreopc,ra,rb,disp =

let val disp =

case disp of

I.REGop rb => emit_GP rb

| I.IMMop i => itow i

| I.HILABop le => itow(LabelExp.valueOf le)

| I.LOLABop le => itow(LabelExp.valueOf le)

| I.LABop le => itow(LabelExp.valueOf le)

| I.CONSTop c => itow(Constant.valueOf c)
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in Memoryopc,ra,rb,disp

end

| ILoadStoreopc,r:GP,b,d = LoadStoreopc,ra=r,rb=b,disp=d

| FLoadStoreopc,r:FP,b,d = LoadStoreopc,ra=r,rb=b,disp=d

| Jumpopc:6,ra:GP 5,rb:GP 5,h:2,disp:int signed 14 (* table C-3 *)

| Memory_funopc:6, ra:GP 5, rb:GP 5, func:16 (* p3-9 *)

| Branchopc:branch 6, ra:GP 5, disp:signed 21 (* p3-10 *)

| Fbranchopc:fbranch 6, ra:FP 5, disp:signed 21 (* p3-10 *)

(* p3-11 *)

| Operate0opc:6,ra:GP 5,rb:GP 5,sbz:13..15,_:1=0,func:5..11,rc:GP 5

(* p3-11 *)

| Operate1opc:6,ra:GP 5,lit:signed 13..20,_:1=1,func:5..11,rc:GP 5

| Operateopc,ra,rb,func,rc =

(case rb of

I.REGop rb => Operate0opc,ra,rb,func,rc,sbz=0w0

| I.IMMop i => Operate1opc,ra,lit=itow i,func,rc

| I.HILABop le => Operate1opc,ra,lit=itow(LabelExp.valueOf le),func,rc

| I.LOLABop le => Operate1opc,ra,lit=itow(LabelExp.valueOf le),func,rc

| I.LABop le => Operate1opc,ra,lit=itow(LabelExp.valueOf le),func,rc

| I.CONSTop c => Operate1opc,ra,lit=itow(Constant.valueOf c),func,rc

)

| Foperateopc:6,fa:FP 5,fb:FP 5,func:5..15,fc:FP 5

| Palopc:6=0,func:26

29.3.4 Specifying the instruction set

structure MC =

struct

(* compute displacement address *)

fun disp lab = itow(Label.addrOf lab - !loc - 4) ~>> 0w2

end

(*

* The main instruction set definition consists of the following:

* 1) constructor-like declaration defines the view of the instruction,

* 2) assembly directive in funny quotes ‘‘ ’’,

* 3) machine encoding expression,

* 4) semantics expression in [[ ]],

* 5) delay slot directives etc (not necessary in this architecture!)

*)

instruction

DEFFREG of $FP (* define a floating point register *)

‘‘deffreg <FP>’’

(* Pseudo instruction for the register allocator *)

(* Load/Store *)

| LDA of r: $GP, b: $GP, d:operand (* use of REGop is illegal *)
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‘‘lda�<r>, <d>()’’

ILoadStoreopc=0w08,r,b,d

| LDAH of r: $GP, b: $GP, d:operand (* use of REGop is illegal *)

‘‘ldah�<r>, <d>()’’

ILoadStoreopc=0w09,r,b,d

| LOAD of ldOp:load, r: $GP, b: $GP, d:operand, mem:Region.region

‘‘<ldOp>�<r>, <d>()’’

ILoadStoreopc=emit_load ldOp,r,b,d

| STORE of stOp:store, r: $GP, b: $GP, d:operand, mem:Region.region

‘‘<stOp>�<r>, <d>()’’

ILoadStoreopc=emit_store stOp,r,b,d

| FLOAD of ldOp:fload, r: $FP, b: $GP, d:operand, mem:Region.region

‘‘<ldOp>�<r>, <d>()’’

FLoadStoreopc=emit_fload ldOp,r,b,d

| FSTORE of stOp:fstore, r: $FP, b: $GP, d:operand, mem:Region.region

‘‘<stOp>�<r>, <d>()’’

FLoadStoreopc=emit_fstore stOp,r,b,d

(* Control Instructions *)

| JMPL of r: $GP, b: $GP, d:int * Label.label list

‘‘jmpl�<r>, <d>()’’

Jumpopc=0wx1a,h=0w0,ra=r,rb=b,disp=d (* table C-3 *)

| JSR of r: $GP, b: $GP, d:int * C.cellset * C.cellset

‘‘jsr�<r>, <d>()’’

Jumpopc=0wx1a,h=0w1,ra=r,rb=b,disp=d

| RET of r: $GP, b: $GP, d:int

‘‘ret�<r>, <d>()’’

Jumpopc=0wx1a,h=0w2,ra=r,rb=b,disp=d

| BRANCH of branch * $GP * Label.label

‘‘<branch> <GP>, <label>’’

Branchopc=branch,ra=GP,disp=disp label

| FBRANCH of fbranch * $FP * Label.label

‘‘<fbranch> <FP>, <label>’’

Fbranchopc=fbranch,ra=FP,disp=disp label

(* Integer Operate *)

| OPERATE of oper:operate, ra: $GP, rb:operand, rc: $GP

‘‘<oper>�<ra>, <rb>, <rc>’’

(let val (opc,func) = emit_operate oper
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in Operateopc,func,ra,rb,rc

end)

| OPERATEV of oper:operateV, ra: $GP, rb:operand, rc: $GP

‘‘<oper>�<ra>, <rb>, <rc>’’

(let val (opc,func) = emit_operateV oper

in Operateopc,func,ra,rb,rc

end)

| PSEUDOARITH of oper: pseudo_op, ra: $GP, rb:operand, rc: $GP,

tmps: C.cellset

‘‘<oper>�<ra>, <rb>, <rc>’’

(* Copy instructions *)

| COPY of dst: $GP list, src: $GP list,

impl:instruction list option ref, tmp: ea option

‘‘<app emitInstr (Shuffle.shuffleregmap,tmp,dst,src)>’’

| FCOPY of dst: $FP list, src: $FP list,

impl:instruction list option ref, tmp: ea option

‘‘<app emitInstr (Shuffle.shufflefpregmap,tmp,dst,src)>’’

(* Floating Point Operate *)

| FOPERATE of oper:foperate, fa: $FP, fb: $FP, fc: $FP

‘‘<oper>�<fa>, <fb>, <fc>’’

(let val (opc,func) = emit_foperate oper

in Foperateopc,func,fa,fb,fc

end)

(* Trapping versions of the above *)

| FOPERATEV of oper:foperateV, fa: $FP, fb: $FP, fc: $FP

‘‘<oper>�<fa>, <fb>, <fc>’’

Foperateopc=0wx16,func=emit_foperateV oper,fa,fb,fc

(* Misc *)

| TRAPB (* Trap barrier *)

‘‘trapb’’

Memory_funopc=0wx18,ra=31,rb=31,func=0wx0

| CALL_PAL of code:osf_user_palcode, def: $GP list, use: $GP list

‘‘call_pal <code>’’

Palfunc=emit_osf_user_palcode code

end

29.4 4 Machine Descriptions

Here are some machine descriptions in varing degree of completion.
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• Sparc 172

• Hppa 173

• Alpha 174

• PowerPC 175

• X86 176

29.5 Syntax Highlighting Macros

• For vim 5.3

172file: ../sparc/sparc.md
173file: ../hppa/hppa.md
174file: ../alpha/alpha.md
175file: ../ppc/ppc.md
176file: ../X86/X86.md

md.vim
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30 The Graph Library

30.1 Overview

Graphs are the most fundamental data structure in the MLRISC system, and in fact in many optimizing
compilers. MLRISC now contains an extensive library for working with graphs.

All graphs in MLRISC are modeled as edge- and node-labeled directed multi-graphs. Briefly, this
means that nodes and edges can carry user supplied data, and multiple directed edges can be attached
between any two nodes. Self-loops are also allowed.

A node is uniquely identified by its node_id, which is simply an integer. Node ids can be assigned
externally by the user, or else generated automatically by a graph. All graphs keep track of all node ids
that are currently used, and the method new_id : unit -> node_id generates a new unused id.

A node is modeled as a node id and node label pair, (i, l). An edge is modeled as a triple i→l j, which
contains the source and target node ids i and j, and the edge label l. These types are defined as follows:

type ’n node = node_id * ’n
type ’e edge = node_id * node_id * ’e

30.1.1 The graph signature

All graphs are accessed through an abstract interface of the polymorphic type (’n,’e,’g) graph. Here,
’n is the type of the node labels, ’e is the type of the edge labels, and ’g is the type of any extra information
embedded in a graph. We call the latter graph info.

Formally, a graph G is a quadruple (V,L,E, I) where V is a set of node ids, L : V− >′ a is a node
labeling function from vertices to node labels,E is a multi-set of labeled-edges of type V ∗V ∗′ e, and I :′ g
is the graph info.

The interface of a graph is packaged into a record of methods that manipulate the base representation:

signature GRAPH177 = sig

type node_id = int

type ’n node = node_id * ’n
type ’e edge = node_id * node_id * ’e

exception Graph of string

exception Subgraph

exception NotFound

exception Unimplemented

exception Readonly

datatype (’n,’e,’g) graph = GRAPH of (’n,’e,’g) graph_methods

withtype (’n,’e,’g) graph_methods =

{ name : string,

graph_info : ’g,
(* selectors *)

(* mutators *)

(* iterators *)

}
end

177file: graphs/graph.sig
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A few exceptions are predefined in this signature, which have the following informal interpretation.
Exception Graph is raised when a bug is encountered. The exception Subgraph is raised if certain seman-
tics constraints imposed on a graph are violated. The exception NotFound is raised if lookup of a node id
fails. The exception Unimplemented is raised if a certain feature is accessed but is undefined on the graph.
The exception Readonly is raised if the graph is readonly and an update operation is attempted.

30.1.2 Selectors

Methods that access the structure of a graph are listed below:

nodes : unit -> ′n node list Return a list of all nodes in a graph em
edges : unit -> ′e edge list Return a list of all edges in a graph
order : unit -> int Return the number of nodes in a graph. The graph is empty if its order is zero
size : unit -> int Return the number of edges in a graph
capacity : unit -> int Return the maximum node id in the graph, plus 1. This can be used as a new id
succ : node id -> node id list Given a node id i, return the node ids of all its successors, i.e. {j|i→l j ∈ E}.
pred : node id -> node id list Given a node id j, return the node ids of all its predecessors, i.e. {i|i→l j ∈ E}.
out edges : node id -> ′e edge list Given a node id i, return all the out-going edges from node i, i.e. all edges whose source is i.
in edges : node id -> ′e edge list Given a node id j, return all the in-coming edges from node j, i.e. all edges whose target is j.
has edge : node id * node id -> bool Given two node ids i and j, find out if an edge with source i and target j exists.
has node : node id -> bool Given a node id i, find out if a node of id i exists.
node info : node id -> ′n Given a node id, return its node label. If the node does not exist, raise exception NotFound.

30.1.3 Graph hierarchy

A graph G may in fact be a subgraph of a base graph G′, or obtained from G′ via some transformation T .
In such cases the following methods may be used to determine of the relationship between G and G′. An
entry edge is an edge in G′ that terminates at a node in G, but is not an edge in G. Similarly, an exit edge
is an edge in G′ that originates from a node in G, but is not an edge in G. An entry node is a node in G
that has an incoming entry edge. An exit node is a node in G that has an out-going exit edge. If G is not a
subgraph, all these methods will return nil.

entries : unit -> node id list Return the node ids of all the entry nodes.
exits : unit -> node id list Return the node ids of all the exit nodes.
entry edges : node id -> ′e edge list Given a node id i, return all the entry edges whose sources are i.
exit edges : node id -> ′e edge list Given a node id i, return all the exit edges whose targets are i.

30.1.4 Mutators

Methods to update a graph are listed below:
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new id : unit -> node id Return a unique node id guaranteed to be absent in the current graph.
add node : ’n node -> unit Insert node into the graph. If a node of the same node id already exists, replace the old node with the new.
add edge : ’e edge -> unit Insert an edge into the graph.
remove node : node id -> unit Given a node id n, remove the node with the node id from the graph. This also automatically removes all edges with source or target n.
set out edges : node id * ’e edge list -> unit Given a node id n, and a list of edges e1, . . . , en with sources n, replace all out-edges of n by e1, . . . , en.
set in edges : node id * ’e edge list -> unit Given a node id n, and a list of edges e1, . . . , en with targets n, replace all in-edges of n by e1, . . . , en.
set entries : node id list -> unit Set the entry nodes of a graph.
set exits : node id list -> unit Set the exit nodes of a graph.
garbage collect : unit -> unit Reclaim all node ids of nodes that have been removed by remove_node. Subsequent new_id will reuse these node ids.

30.1.5 Iterators

Two primitive iterators are supported in the graph interface. Method forall_nodes iterates over all the
nodes in a graph, while method forall_edges iterates over all the edges. Other more complex iterators
can be found in other modules.

forall nodes : (′n node -> unit) -> unit Given a function f on nodes, apply f on all the nodes in the graph.
forall edges : (′e edge -> unit) -> unit Given a function f on edges, apply f on all the edges in the graph.

30.1.6 Manipulating a graph

Since operations on the graph type are packaged into a record, an “object oriented” style of graph manip-
ulation should be used. For example, if G is a graph object, then we can obtain all the nodes and edges of
G as follows.

val GRAPH g = G

val edges = #edges g ()

val nodes = #nodes g ()

We can view #edges g as sending the message to G. While all this seems like mere syntactic deviation
from the usual signature/structure approach, there are two crucial differences which we will exploit: (i)
records are first class objects while structures are not (consequently late binding of “methods” and cannot
be easily simulated on the structure level); (ii) recursion is possible on the type level, while recursive
structures are not available. The extra flexibility of this choice becomes apparent with the introduction of
views later.

30.1.7 Creating a Graph

A graph implementation has the following signature

signature GRAPH_IMPLEMENTATION178 = sig

val graph : string * ’g * int -> (’n,’e,’g) graph

end

The function graph takes a string (the name of the graph), graph info, and a default size as arguments
and create an empty graph.

The functor DirectedGraph:

178file: graphs/graphimpl.sig
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functor DirectedGraph(A : ARRAY_SIG) : GRAPH_IMPLEMENTATION

implements a graph using adjacency lists as internal representation. It takes an array type as a param-
eter. For graphs with node ids that are dense enumerations, the DynamicArray structure should be used
as the parameter to this functor. The structure DirectedGraph is predefined as follows:

structure DirectedGraph179 = DirectedGraph(DynamicArray)

For node ids that are sparse enumerations, the structure HashArray, which implements integer-keyed
hash tables with the signature of arrays, can be used as argument to DirectedGraph. For graphs with fixed
sizes determined at creation time, the structure Array can be used (see also functor UndoableArray180,
which creates arrays with undoable updates, and transaction-like semantics.)

30.1.8 Basic Graph Algorithms

30.1.9 Depth-/Breath-First Search

val dfs : (’n,’e,’g) graph ->

(node_id -> unit) ->

(’e edge -> unit) ->

node_id list -> unit

The function dfs takes as arguments a graph, a function f : node_id -> unit, a function g : ’e edge -> unit,
and a set of source vertices. It performs depth first search on the graph. The function f is invoked when-
ever a new node is being visited, while the function g is invoked whenever a new edge is being traversed.
This algorithm has running time O(|V |+ |E|).

val dfsfold : (’n,’e,’g) graph ->

(node_id * ’a -> ’a) ->

(’e edge * ’b -> ’a) ->

node_id list -> ’a * ’b -> ’a * ’b
val dfsnum : (’n,’e,’g) graph ->

(node_id * ’a -> ’a) ->

dfsnum : int array, compnum : int array

The function bfs is similar to dfs except that breath first search is performed.

val bfs : (’n,’e,’g) graph ->

(node_id -> unit) ->

(’e edge -> unit) ->

node_id list -> unit

val bfsdist : (’n,’e,’g) graph -> node_id list -> int array

30.1.10 Preorder/Postorder numbering

val preorder_numbering : (’n,’e,’g) graph -> int -> int array

val postorder_numbering : (’n,’e,’g) graph -> int -> int array

Both these functions take a tree T and a root v, and return the preorder numbering and the postorder
numbering of the tree respectively.

179file: graphs/digraph.sml
180file: library/undoable-array.sml
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30.1.11 Topological Sort

val topsort : (’n,’e,’g) graph -> node_id list -> node_id list

The function topsort takes a graph G and a set of source vertices S as arguments. It returns a topo-
logical sort of all the nodes reachable from the set S. This algorithm has running time O(|S|+ |V |+ |E|).

30.1.12 Strongly Connected Components

val strong_components : (’n,’e,’g) graph ->

(node_id list * ’a -> ’a) -> ’a -> ’a

The function strong_components takes a graph G and an aggregate function f with type

node_id list * ’a -> ’a

and an identity element x : ’a as arguments. Function f is invoked with a strongly connected compo-
nent (represented as a list of node ids) as each is discovered. That is, the function strong_components

computes

f(SCCn, f(SCCn−1, . . . , f(SCC1, x)))

where SCC1, . . . , SCCn are the strongly connected components in topological order. This algorithm
has running time O(|V |+ |E|).

30.1.13 Biconnected Components

val biconnected_components : (’n,’e,’g) graph ->

(’e edge list * ’a -> ’a) -> ’a -> ’a

The function biconnected_components takes a graph G and an aggregate function f with type

’e edge list * ’a -> ’a

and an identity element x : ’a as arguments. Function f is invoked with a biconnected component (rep-
resented as a list of edges) as each is discovered. That is, the function biconnected_components computes

f(BCCn, f(BCCn−1, . . . , f(BCC1, x)))

where BCC1, . . . , BCCn are the biconnected components. This algorithm has running time O(|V | +
|E|).

30.1.14 Cyclic Test

val is_cyclic : (’n,’e,’g) graph -> bool

Function is_cyclic tests if a graph is cyclic. This algorithm has running time O(|V |+ |E|).
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30.1.15 Enumerate Simple Cycles

val cycles : (’n,’e,’g) graph -> (’e edge list * ’a -> ’a) -> ’a ->’a

A simple cycle is a circuit that visits each vertex only once. The function cycles enumerates all simple
cycles in a graph G. It takes as argument an aggregate function f of type

’e edge list * ’a -> ’a

and an identity element e, and computes as result the expression

f(cn, f(cn−1, f(cn−2, . . . , f(c1, e))))

where c1, . . . , cn are all the simple cycles in the graph. All cycles c1, . . . , cn are guaranteed to be distinct. A
cycle is represented as a sequence of adjacent edges, i.e. in the order of

v1− > v2, v2− > v3, v3− > v4, . . . , vn−1− > vn, vn− > v1

Our implementation works by first decomposing the graph into its strongly connected components, then
uses backtracking to enumerate simple cycles in each component.

30.1.16 Minimal Cost Spanning Tree

signature MIN_COST_SPANNING_TREE181 = sig

exception Unconnected

val spanning_tree : { weight : ’e edge -> ’a,
< : ’a * ’a -> bool

} -> (’n, ’e, ’g) graph

-> (’e edge * ’a -> ’a) -> ’a -> ’a
end

structure Kruskal182 : MIN_COST_SPANNING_TREE

Structure Kruskal implements Kruskal’s algorithm for computing a minimal cost spanning tree of a
graph. The function spanning_tree takes as arguments:

• a weight function which when given an edge returns its weight

• an ordering function <, which is used to compare the weights

• a graph G

• an accumulator function f , and

• an identity element x

The function spanning_tree computes

f(en, f(en−1, . . . , f(e1, x)))

where e1, . . . , en are the edges in a minimal cost spanning tree of the graph. The exception Unconnected

is raised if the graph is unconnected.

181file: graphs/spanning-tree.sig
182file: graphs/kruskal.sml
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30.1.17 Abelian Groups

Graph algorithms that deal with numeric weights or distances are parameterized with respect to the sig-
natures ABELIAN_GROUP or ABELIAN_GROUP_WITH_INF. These are defined as follows:

signature ABELIAN_GROUP183 = sig

type elem

val + : elem * elem -> elem

val - : elem * elem -> elem

val : elem -> elem

val zero : elem

val < : elem * elem -> bool

val == : elem * elem -> bool

end

signature ABELIAN_GROUP_WITH_INF184 = sig

include ABELIAN_GROUP

val inf : elem

end

Signature ABELIAN_GROUP specifies an ordered commutative group, while signature ABELIAN_GROUP_WITH_INF
specifies an ordered commutative group with an infinity element inf.

30.1.18 Single Source Shortest Paths

signature SINGLE_SOURCE_SHORTEST_PATHS185 = sig

structure Num : ABELIAN_GROUP_WITH_INF

val single_source_shortest_paths :

{ graph : (’n,’e,’g) graph,

weight : ’e edge -> Num.elem,

s : node_id

} ->

{ dist : Num.elem array,

pred : node_id array

}
end

functor Dijkstra186(Num : ABELIAN_GROUP_WITH_INF)

: SINGLE_SOURCE_SHORTEST_PATHS

The functor Dijkstra implements Dijkstra’s algorithm for single source shortest paths. The function
single_source_shortest_paths takes as arguments:

• a graph G,

• a weight function on edges, and

• the source vertex s.
183file: graphs/groups.sig
184file: graphs/groups.sig
185file: graphs/shortest-paths.sig
186file: graphs/dijkstra.sml
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It returns two arrays dist and pred indexed by vertices. These arrays have the following interpretation.
Given a vertex v,

• dist[v] contains the distance of v from the source s

• pred[v] contains the predecessor of v in the shortest path from s to v, or -1 if v = s.

Dijkstra’s algorithm fails to work on graphs that have negative edge weights. To handle negative
weights, Bellman-Ford’s algorithm can be used. The exception NegativeCycle is raised if a cycle of nega-
tive total weight is detected.

functor BellmanFord187(Num : ABELIAN_GROUP_WITH_INF) : sig

include SINGLE_SOURCE_SHORTEST_PATHS

exception NegativeCycle

end

30.1.19 All Pairs Shortest Paths

signature ALL_PAIRS_SHORTEST_PATHS188 = sig

structure Num : ABELIAN_GROUP_WITH_INF

val all_pairs_shortest_paths :

{ graph : (’n,’e,’g) graph,

weight : ’e edge -> Num.elem

} ->

{ dist : Num.elem Array2.array,

pred : node_id Array2.array

}
end

functor FloydWarshall189(Num : ABELIAN_GROUP_WITH_INF)

: ALL_PAIRS_SHORTEST_PATHS

The functor FloydWarshall implements Floyd-Warshall’s algorithm for all pairs shortest paths. The
function all_pairs_shortest_paths takes as arguments:

• a graph G, and

• a weight function on edges

It returns two 2-dimensional arrays dist and pred indexed by vertices (u, v). These arrays have the fol-
lowing interpretation. Given a pair (u, v),

• dist[u, v] contains the distance from u to v.

• pred[u, v] contains the predecessor of v in the shortest path from u to v, or−1 if u = v.

This algorithm runs in time O(|V |3 + |E|).
An alternative implementation is available that uses Johnson’s algorithm, which works better for sparse

graphs:

187file: graphs/bellman-ford.sml
188file: graphs/shortest-paths.sig
189file: graphs/floyd-warshall.sml
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functor Johnson190(Num : ABELIAN_GROUP_WITH_INF)

: sig include ALL_PAIRS_SHORTEST_PATHS

exception Negative Cycle

end

30.1.20 Transitive Closure

signature TRANSITIVE_CLOSURE191 = sig

val acyclic_transitive_closure : + : (’e * ’e -> ’e), simple : bool

-> (’n,’e,’g) graph -> unit

val acyclic_transitive_closure2 :

{ + : ’e * ’e -> ’e,
max : ’e * ’e -> ’e

} -> (’n,’e,’g) graph -> unit

val transitive_closure : (’e * ’e -> ’e) -> (’n,’e,’g) graph -> unit

structure TransitiveClosure192 : TRANSITIVE_CLOSURE

Structure TransitiveClosure implements in-place transitive closures on graphs. Three functions are
implemented. Functions acyclic_transitive_closure and acyclic_transitive_closure2 can be used
to compute the transitive closure of an acyclic graph, whereas the function transitive_closure com-
putes the transitive closure of a cyclic graph. All take a binary function

+ : ’e * ’e -> ’e

defined on edge labels. Transitive edges are inserted in the following manner:

• acyclic_transitive_closure: given u→l v and v →l′ w, if the flag simple is false or if the transitive
edge u→ w does not exists, then u→l+l′ w is added to the graph.

• acyclic_transitive_closure2: given u →l v and v →l′ w, the transitive u →l+l′ w is added to the
graph. Furthermore, all parallel edges

u→l1 w, . . . , u→ln w

are coalesced into a single edge u→l w, where l = maxi=1...nli

30.1.21 Max Flow

The function max_flow computes the maximum flow between the source vertex s and the sink vertex t in
the graph when given a capacity function.

signature MAX_FLOW193 = sig

structure Num : ABELIAN_GROUP

val max_flow : { graph : (’n,’e,’g) graph,

s : node_id,

t : node_id,

190file: graphs/johnson.sml
191file: graphs/trans-closure.sml
192file: graphs/trans-closure.sml
193file: graphs/max-flow.sig
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capacity : ’e edge -> Num.elem,

flows : ’e edge * Num.elem -> unit

} -> Num.elem

end

functor MaxFlow194(Num : ABELIAN_GROUP) : MAX_FLOW

The function max_flow returns its result in the follow manner: The function returns the total flow
as its result value. Furthermore, the function flows is called once for each edge e in the graph with its
associated flow fe.

This algorithm uses Goldberg’s preflow-push approach, and runs in O(|V |2|E|) time.

30.1.22 Min Cut

The function min_cut computes the minimum (undirected) cut in a graph when given a weight function
on its edges.

signature MIN_CUT195 = sig

structure Num : ABELIAN_GROUP

val min_cut : { graph : (’n,’e,’g) graph,

weight : ’e edge -> Num.elem

} -> node_id list * Num.elem

end

functor MinCut196(Num : ABELIAN_GROUP) : MIN_CUT

The function min_cut returns a list of node ids denoting one side of the cutC (the other side of the cut
is (V − C) and the weight cut.

30.1.23 Max Cardinality Matching

val matching : (’n,’e,’g) graph -> (’e edge * ’a -> ’a) -> ’a -> ’a * int

The function BipartiteMatching.matching computes the maximal cardinality matching of a bipartite
graph. As result, the function iterates over all the matched edges and returns the number of matched
edges. The algorithm runs in time O(|V ||E|).

30.1.24 Node Partition

signature NODE_PARTITION = sig

type ’n node_partition

val node_partition : (’n,’e,’g) graph -> ’n node_partition

val !! : ’n node_partition -> node_id -> ’n node

val == : ’n node_partition -> node_id * node_id -> bool

val union : ’n node_partition -> (’n node * ’n node -> ’n node) ->

node_id * node_id -> bool

val union’: ’n node_partition -> node_id * node_id -> bool

end
194file: graphs/max-flow.sml
195file: graphs/min-cut.sig
196file: graphs/min-cut.sml
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30.1.25 Node Priority Queue

signature NODE_PRIORITY_QUEUE = sig

type node_priority_queue

exception EmptyPriorityQueue

val create : (node_id * node_id -> bool) -> node_priority_queue

val fromGraph : (node_id * node_id -> bool) ->

(’n,’e,’g) graph -> node_priority_queue

val isEmpty : node_priority_queue -> bool

val clear : node_priority_queue -> unit

val min : node_priority_queue -> node_id

val deleteMin : node_priority_queue -> node_id

val decreaseWeight : node_priority_queue * node_id -> unit

val insert : node_priority_queue * node_id -> unit

val toList : node_priority_queue -> node_id list

end

30.2 Views

Simply put, a view is an alternative presentation of a data structure to a client. A graph, such as the
control flow graph, frequently has to be presented in different ways in a compiler. For example, when
global scheduling is applied on a region (a subgraph of the CFG), we want to be able to concentrate on
just the region and ignore all nodes and edges that are not part of the current focus. All transformations
that are applied on the current region view should be automatically reflected back to the entire CFG as a
whole. Furthermore, we want to be able to freely intermix graphs and subgraphs of the same type in our
program, without having to introducing sums in our type representations.

The subgraph_view view combinator accomplishes this. Subgraph takes a list of nodes and produces
a graph object which is a view of the node induced subgraph of the original graph. All modification to the
subgraph are automatically reflected back to the original graph. From the client point of view, a graph and
a subgraph are entirely indistinguishable, and furthermore, graphs and subgraphs can be freely mixed
together (they are the same type from ML’s point of view.)

This transparency is obtained by selective method overriding, composition, and delegation. For ex-
ample, a generic graph object provides the following methods for setting and looking up the entries and
exits from a graph.

set_entries : node_id list -> unit

set_exits : node_id list -> unit

entries : unit -> node_id list

exits : unit -> node_id list

For example, a CFG usually has a single entry and a single exit. These methods allow the client to
destinate one node as the entry and another as the exit. In the case of subgraph view, these methods
are overridden so that the proper conventions are preserved: a node in a subgraph is an entry (exit) iff
there is an in-edge (out-edge) from (to) outside the (sub-)graph. Similarly, the methods entry_edges and
exit_edges can be used return the entry and exit edges associated with a node in a subgraph.

entry_edges : node_id -> ’e edge list

exit_edges : node_id -> ’e edge list
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These methods are initially defined to return [] in a graph and subsequently overridden in a subgraph.

30.2.1 Update Transparency

Suppose a view G′ is created from some base graphs or views. Update transparency refers to the fact that
G′ behaves consistently according to its conventions and semantics when updates are performed. There
are 4 different type of update transparencies:

• update opaque A update opaque view disallows updates to both itself and its base graphs.

• globally update transparent A globally update transparent view allows updates to its base graphs but
not to itself. Changes will then be automatically reflected in the view.

• locally update transparent A locally update transparent view allows updates to itself but not to its
base graphs. Changes will be automatically reflected to the base graphs.

• fully update transparent A fully update transparent view allows updates through its methods or
through its base graphs’.

30.2.2 Structural Views

30.2.3 Reversal

val ReversedGraphView.rev_view197 : (’n,’e,’g) graph -> (’n,’e,’g) graph

This combinator takes a graph G and produces a view GR which reverses the direction of all its edges,
including entry and exit edges. Thus the edge i →l j in G becomes the edge j →l i in GR. This view is
fully update transparent.

30.2.4 Readonly

val ReadOnlyGraphView.readonly_view198 : (’n,’e,’g) graph -> (’n,’e,’g) graph

This function takes a graph G and produces a view G′ in which no mutator methods can be used.
Invoking a mutator method raises the exception Readonly. This view is globally update transparent.

30.2.5 Snapshot

functor GraphSnapShot199(GI : GRAPH_IMPLEMENTATION) : GRAPH_SNAPSHOT

signature GRAPH_SNAPSHOT = sig

val snapshot : (’n,’e,’g) graph ->

{ picture : (’n,’e,’g) graph, button : unit -> unit }
end

The function snapshot can be used to keep a cached copy of a view a.k.a the picture. This cached copy
can be updated locally but the modification will not be reflected back to the base graph. The function
button can be used to keep the view and the base graph up-to-date.

197file: graphs/revgraph.sml
198file: graphs/readonly.sml
199file: graphs/snap-shot.sml
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30.2.6 Map

val IsomorphicGraphView.map200 :

(’n node -> ’n’) -> (’e edge -> ’e’) -> (’g -> ’g’) ->

(’n,’e,’g) graph -> (’n’,’e’,’g’) graph

The function map is a generalization of the map function on lists. It takes three functions

f : ’n node -> ’n
g : ’e edge -> ’e
h : ’g -> g’

and a graph G = (V,L,E, I) as arguments. It computes the view G′ = (V,L′, E′, I ′) where

L′(v) = f(v, L(v)) for all v ∈ V
E′ = i→g(i,j,l) j|i→l j ∈ E
I ′ = h(I)

30.2.7 Singleton

val SingletonGraphView.singleton_view201 : (’n,’e,’g) graph -> node_id -> (’n,’e,’g) graph

Function singleton_view takes a graph G and a node id v (which must exists in G) and return an
edge-free graph with only one node (v). This view is opaque.

30.2.8 Node id renaming

val RenamedGraphView.rename_view202 : int -> (’n,’e,’g) graph -> (’n’,’e’,’g’) graph

The function rename_view takes an integer n and a graphG and create a fully update transparent view
where all node ids are incremented by n. Formally, given graph G = (V,E,L, I) it computes the view
G′ = (V ′, E′, L′, I) where

V ′ = v + n|v ∈ V
E′ = i+ n→l j + n|i→l j ∈ E
L′ = λv.L(v − n)

30.2.9 Union and Sum

val UnionGraphView.union_view203 : (’g * ’g’) -> ’g’’) ->

(’n,’e,’g) graph * (’n,’e,’g’) graph -> (’n’,’e’,’g’’) graph

GraphCombinations.unions : (’n,’e,’g) graph list -> (’n,’e,’g) graph

GraphCombinations.sum : (’n,’e,’g) graph * (’n,’e,’g) graph -> (’n,’e,’g) graph

GraphCombinations.sums : (’n,’e,’g) graph list -> (’n,’e,’g) graph

200file: graphs/isograph.sml
201file: graphs/singleton.sml
202file: graphs/renamegraph.sml
203file: graphs/uniongraph.sml
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Function union_view takes as arguments a function f , and two graphs G = (V,L,E, I) and G′ =
(V ′, L′, E′, I ′), it computes the union G+G′ of these graphs. Formally, G ∪G′ = (V ′′, L′′, E′′, I ′′) where

V ′′ = V ∪ V ′

L′′ = LoverridesL′

E′′ = E ∪ E′

I ′′ = f(I, I ′)

The function sum constructs a disjoint sum of two graphs.

30.2.10 Simple Graph View

val SimpleGraph.simple_graph204 : (node_id * node_id * ’e list -> ’e) ->

(’n,’e,’g) graph -> (’n,’e,’g) graph

Function simple_graph takes a merge function f and a multi-graphG as arguments and return a view
in which all parallel multi-edges (edges with the same source and target) are combined into a single edge:
i.e. any collection of multi-edges between the same source s and target t and with labels l1, . . . , ln, are
replaced by the edge s →lst t in the view, where lst = f(s, t, [l1, . . . , ln]). The function f is assumed to
satisfy the equality l = f(s, t, [l]) for all l, s and t.

30.2.11 No Entry or No Exit

val NoEntryView.no_entry_view205 : (’n,’e,’g) graph -> (’n,’e,’g) graph

NoEntryView.no_exit_view : (’n,’e,’g) graph -> (’n,’e,’g) graph

The function no_entry_view creates a view in which all entry edges (and thus entry nodes) are re-
moved. The function no_exit_view is the dual of this and creates a view in which all exit edges are re-
moved. This view is fully update transparent. It is possible to remove all entry and exit edges by compos-
ing these two functions.

30.2.12 Subgraphs

val SubgraphView.subgraph_view206 : node_id list -> (’e edge -> bool) ->

(’n,’e,’g) graph -> (n’,’e’,’g’) graph

The function subgraph_view takes as arguments a set of node ids S, an edge predicate p and a graph
G = (V,L,E, I). It returns a view in which only the visible nodes are S and the only visible edges e are
those that satisfy p(e) and with sources and targets in S. S must be a subset of V .

val Subgraph_P_View.subgraph_p_view207 : node_id list ->

(node_id -> bool) -> (node_id * node_id -> bool) ->

(’n,’e,’g) graph -> (’n’,’e’,’g’) graph

The function subgraph_view takes as arguments a set of node ids S, a node predicate p, an edge pred-
icate q and a graph G = (V,L,E, I). It returns a view in which only the visible nodes v are those in S
satisfying p(v), and the only visible edges e are those that satisfy q(e) and with sources and targets in S. S
must be a subset of V .

204file: graphs/simple-graph.sml
205file: graphs/no-exit.sml
206file: graphs/subgraph.sml
207file: graphs/subgraph-p.sml
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30.2.13 Trace

val TraceView.trace_view208 : node_id list -> (’n,’e,’g) graph -> (’n’,’e’,’g’) graph

exit edges

entry edges

A

B C

D

E F

G

ENTRY

EXIT

T F

T F

T F

T F

Figure 1: A trace view

A trace is an acyclic path in a graph. The function
trace_view takes a trace of node ids v1, . . . , vn and a
graphG and returns a view in which only the nodes are
visible. Only the edges that connected two adjacent
nodes on the trace, i.e. vi− > vi+1 for some i = 1 . . . n−
1 are considered be within the view. Thus if there is
an edge vi− > vj in G where j 6= i + 1 this edge is
not considered to be within the view — it is considered
to be an exit edge from vi and an entry edge from vj
however. Trace views can be used to construct a CFG
region suitable for trace scheduling [Fis81, Ell85].

Figure 1 illustrates this concept graphically. Here,
the trace view is formed from the nodes A, C, D, F

and G. The solid edges linking the trace is visible within
the view. All other dotted edges are considered to be
either entry of exit edges into the trace. The edge from
node G to A is considered to be both since it exits from
G and enters into A.

30.2.14 Acyclic Subgraph

val AcyclicSubgraphView.acyclic_view209 :

node_id list ->

(’n,’e,’g) graph -> (’n,’e,’g) graph

The function acyclic_view takes an ordered list of
node ids v1, . . . , vn and a graph G as arguments and
return a view G′ such that only the nodes v1, . . . , vn
are visible. In addition, only the edges with direc-
tions consistent with the order list are considered to
be within the view. Thus an edge vi− > vj from G is
in G′ iff 1 ≤ i < j ≤ n. Acyclic views can be used to
construct a CFG region suitable for DAG scheduling. Figure 2 illustrates this concept graphically.

30.2.15 Start and Stop

val StartStopView.start_stop_view210 :

{ start : ’n node,

stop : ’n node,

edges : ’e edge list

} -> (’n,’e,’g) graph -> (’n’,’e’,’g’) graph

208file: graphs/trace-graph.sml
209file: graphs/acyclic-graph.sml
210file: graphs/start-stop.sml
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Figure 2: An acyclic subgraph

The function start_stop_view

30.2.16 Single-Entry/Multiple-Exits

SingleEntryMultipleExit.SEME211

exit : ’n node -> (’n,’e,’g) graph -> (’n,’e,’g) graph

The function SEME converts a single-entry/multiple-
exits graph G into a single entry/single exit graph. It
takes an exit node e and a graph G and returns a view
G′. Suppose i →l j is an exit edge in G. In view G this
edge is replaced by a new normal edge i →l e and a
new exit edge e →l j. Thus e becomes the sole exit
node in the new view.

30.2.17 Behavioral Views

30.2.18 Behavioral Primitives

Figure 3 lists the set of behavioral primitives defined in
structure GraphWrappers212. These functions allow the
user to attach an action a to a mutator methodm such
that whenever m is invoked so does a. Given a graph
G, the combinator

do_before_xxx : f -> (’n,’e,’g) graph -> (’n,’e,’g) graph

returns a view G′ such that whenever method xxx is
invoked in G′, the function f is called. Similarly, the
combinator

do_after_xxx : f -> (’n,’e,’g) graph -> (’n,’e,’g) graph

creates a new viewG′′ such that the function f is called
after the method is invoked.

Frequently it is not necessary to know precisely by
which method a graph’s structure has been modified, only that it is. The following two methods take a no-
tification function f and returns a new view. f is invoked before a modification is attempted in a view cre-
ated by do_before_changed. It is invoked after the modification in a view created by do_after_changed.

do_before_changed : ((’n,’e,’g) graph -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_after_changed : ((’n,’e,’g) graph -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

Behavioral views created by the above functions are all fully update transparent.

211file: graphs/SEME.sml
212file: graphs/wrappers.sml
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do_before_new_id : (unit -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_after_new_id : (node_id -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_before_add_node : (’n node -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_after_add_node : (’n node -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_before_add_edge : (’e edge -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_after_add_edge : (’e edge -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_before_remove_node : (node_id -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_after_remove_node : (node_id -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_before_set_in_edges : (node_id * ’e edge list -> unit) ->

(’n,’e,’g) graph -> (’n,’e,’g) graph

do_after_set_in_edges : (node_id * ’e edge list -> unit) ->

(’n,’e,’g) graph -> (’n,’e,’g) graph

do_before_set_out_edges : (node_id * ’e edge list -> unit) ->

(’n,’e,’g) graph -> (’n,’e,’g) graph

do_after_set_out_edges : (node_id * ’e edge list -> unit) ->

(’n,’e,’g) graph -> (’n,’e,’g) graph

do_before_set_entries : (node_id list -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_after_set_entries : (node_id list -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_before_set_exits : (node_id list -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

do_after_set_exits : (node_id list -> unit) -> (’n,’e,’g) graph -> (’n,’e,’g) graph

Figure 3: Behavioral view primitives
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31 The Graph Visualization Library

31.1 Overview

Visualization is an important aid for debugging graph algorithms. MLRISC provides a simple facility for
displaying graphs that adheres to the graph interface. Two graph viewer back-ends are currently sup-
ported. (An interface to the dot tool is still available but is unsupported.)

• vcg213 – this tool supports the browsing of hierarchical graphs, zoom in/zoom out functions. It can
handle up to around 5000 nodes in a graph.

• daVinci214 – this tool supports a separate “survey” view from the main view and text searching. This
tool is slower than vcg but it has a nicer interface, and can handle up to around 500 nodes in a graph.

All graph viewing back-ends work in the same manner. They take a graph whose nodes and edges are
annotated with layout instructions and translate these layout instructions into the target description
language. For vcg, the target description language is GDL. For daVinci, it is a language based on s-
expressions.

31.2 Graph Layout

Some basic layout formats are defined structure GraphLayout are:

structure GraphLayout215 = struct

datatype format =

LABEL of string

| COLOR of string

| NODE_COLOR of string

| EDGE_COLOR of string

| TEXT_COLOR of string

| ARROW_COLOR of string

| BACKARROW_COLOR of string

| BORDER_COLOR of string

| BORDERLESS

| SHAPE of string

| ALGORITHM of string

| EDGEPATTERN of string

type (’n,’e,’g) style =

{ edge : ’e edge -> format list,

node : ’n node -> format list,

graph : ’g -> format list

}
type layout = (format list, format list, format list) graph

end

The interpretation of the layout formats are as follows:

213url: http://www.cs.uni-sb.de/RW/users/sander/html/gsvcg1.html
214url: http://www.Informatik.Uni-Bremen.DE/ davinci/
215file: visualization/graphLayout.sml
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LABEL l Label a node or an edge with the string l
COLOR c Use color c for a node or an edge
NODE_COLOR c Use color c for a node
EDGE_COLOR c Use color c for an edge
TEXT_COLOR c Use color c for the text within a node
ARROW_COLOR c Use color c for the arrow of an edge
BACKARROW_COLOR c Use color c for the arrow of an edge
BORDER_COLOR c Use color c for the border in a node
BORDERLESS Disable border for a node
SHAPE s Use shape s for a node
ALGORITHM a Use algorithm a to layout the graph
EDGEPATTERN p Use pattern p to layout an edge

Exactly how these formats are interpreted is determined by the visualization tool that is used. If a fea-
ture is unsupported then the corresponding format will be ignored. Please see the appropriate reference
manuals of vcg and daVinci for details.

31.3 Layout style

How a graph is layout is determined by its layout style:

type (’n,’e,’g) style =

{ edge : ’e edge -> format list,

node : ’n node -> format list,

graph : ’g -> format list

}

which is simply three functions that convert nodes, edges and graph info into layout formats. The
function makeLayout can be used to convert a layout style into a layout, which can then be passed to a
graph viewer to be displayed.

GraphLayout.makeLayout : (’n,’e,’g) style -> (’n,’e,’g) graph -> layout

31.4 Graph Displays

A graph display is an abstraction for the interface that converts a layout graph into an external graph
description language. This abstraction is defined in the signature below.

signature GRAPH_DISPLAY216 = sig

val suffix : unit -> string

val program : unit -> string

val visualize : (string -> unit) -> GraphLayout.layout -> unit

end

• suffix is the common file suffix used for the graph description language

• program is the common name of the graph visualization tool

• visualize is a function that takes a string output function and a layout graph G as arguments and
generates a graph description based on G

216file: visualization/graphDisplay.sig
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31.5 Graph Viewers

The graph viewer functor GraphViewer217 takes a graph display back-end and creates a graph viewer that
can be used to display any layout graph.

signature GRAPH_VIEWER218 = sig

val view : GraphLayout.layout -> unit

end

functor GraphViewer(D : GRAPH_DISPLAY) : GRAPH_VIEWER

217file: visualization/graphViewer.sml
218file: visualization/graphViewer.sig
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32 Basic Compiler Graphs

32.1 Introduction

In this section we describe the set of core compiler specific graphs and algorithms implemented in ML-
RISC. Mostly of these algorithms are parameterized with respect to the actual intermediate representa-
tion, and as such they do not provide many facilities that are provided by higher abstraction layers, such
as in MLRISC IR219, or in SSA220.

32.1.1 Dominator/Post-dominator Trees

Dominance is a fundamental concept in compiler optimizations. Node A dominates B iff all paths from
the start node to B intersects A. A dual notion is the concept of post − dominance: A post-dominates B
iff all paths from B to the stop node intersects A. A (post-)dominator tree can be used to summarize the
dominance/post-dominance relationship.

functor DominatorTree221

(GraphImpl : GRAPH_IMPLEMENTATION) : DOMINATOR_TREE

The functor implements dominator analysis and creates a dominator/post-dominator tree from a
graph G. A dominator tree is implemented as a graph with the following definition:

signature DOMINATOR_TREE222 = sig

exception Dominator

datatype ’n dom_node =

DOM of { node : ’n, level : int, preorder : int, postorder : int }
type (’n,’e,’g) dom_info

type (’n,’e,’g) dominator_tree = (’n dom_node,unit,(’n,’e,’g) dom_info) graph

type (’n,’e,’g) postdominator_tree = (’n dom_node,unit,(’n,’e,’g) dom_info) graph

We annotated each node in a dominator tree with three extra fields of information, which is useful for
other algorithms:

• level is the nesting level of the tree. The root node has level 0, children of the root has level 1 and
so on.

• preorder is the preorder numbering of a node

• preorder is the postorder numbering of a node.

To create a dominator tree and a postdominator tree from a graph, the following function should be
called.

val dominator_trees : (’n,’e,’g) graph ->

(’n,’e,’g) dominator_tree * (’n,’e,’g) postdominator_tree

219url: mlrisc-ir.html
220url: SSA.html
221file: ir/dominator.sml
222file: ir/dominator.sig
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We use the algorithm of Tarjan and Lengauer, which runs in time O(|V +E|α(|V +E|)) where α is the
functional inverse of the Ackermann function.

To perform many common queries on a dominator tree, we first call the function methods to obtain a
method object.

val methods : (’n,’e,’g) dominator_tree -> dominator_methods

The methods are packed into the following type:

type dominator_methods =

{ dominates : node_id * node_id -> bool,

immediately_dominates : node_id * node_id -> bool,

strictly_dominates : node_id * node_id -> bool,

postdominates : node_id * node_id -> bool,

immediately_postdominates : node_id * node_id -> bool,

strictly_postdominates : node_id * node_id -> bool,

control_equivalent : node_id * node_id -> bool,

idom : node_id -> node_id, $(* ~1 if none *)$

idoms : node_id -> node_id list,

doms : node_id -> node_id list,

ipdom : node_id -> node_id, $(* ~1 if none *)$

ipdoms : node_id -> node_id list,

pdoms : node_id -> node_id list,

dom_lca : node_id * node_id -> node_id,

pdom_lca : node_id * node_id -> node_id,

dom_level : node_id -> int,

pdom_level : node_id -> int,

control_equivalent_partitions : unit -> node_id list list

}

The query methods are as follows:

dominates(a, b) returns true iff a dominates b
immediately dominates(a, b) returns true iff a immediately dominates b
strictly dominates(a, b) returns true iff a strictly dominates b
postdominates(a, b) returns true iff a post-dominates b
immediately postdominates(a, b) returns true iff a immediately post-dominates b
strictly postdominates(a, b) returns true iff a strictly post-dominates b
control equivalent(a, b) returns true iff a dominates b and vice versa
idom(a) returns the immediate dominator of a, or−1 if none exists
idoms(a) returns all nodes that a immediately dominates
doms(a) returns all nodes that a dominates (including a itself)
ipdom(a) returns the immediate post-dominator of a, or−1 if none exists
ipdoms(a) returns all nodes that a immediately post-dominates
pdoms(a) returns all nodes that a post-dominates (including a itself)
dom lca(a, b) returns the least common ancestor of a and b in the dominator tree
pdom lca(a, b) returns the least common ancestor of a and b in the post-dominator tree
dom level(a) returns the nesting level of a in the dominator tree
pdom level(b) returns the nesting level of a in the post-dominator tree
control equivalent partitions partitions the graph into a set of control equivalent nodes.
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The methods dom_lca, pdom_lca and control_equivalent_partitions executes in O(n) time, where
n is the size of the dominator tree. The other methods run in O(1) time.

32.1.2 Control Dependence Graph

Given two nodes A and B in a control flow graph G, we say that B is control dependent on A iff

• B post-dominates a successor of A

• B does not strictly post-dominates A

Intuitively, B is control dependent on A means that some path in the program that goes through A can
by-passed B, and furthermore, A is the point in which this divergence can occur. Control dependence
is used to various kinds of analysis and optimizations in a compiler, such as code motion and global
scheduling [BR91].

To build a control dependence graph, the functor ControlDependenceGraph can be used:

signature CONTROL_DEPENDENCE_GRAPH223 = sig

type (’n,’e,’g) cdg = (’n,’e,’g) graph

val control_dependence_graph :

(’e -> bool) ->

(’n,’e,’g) dominator_tree *

(’n,’e,’g) postdominator_tree ->

(’n,’e,’g) cdg

end

functor ControlDependenceGraph224

(structure Dom : DOMINATOR_TREE

structure GraphImpl : GRAPH_IMPLEMENTATION

) : CONTROL_DEPENDENCE_GRAPH

The control depedence graph is a subcomponent of the program dependence graph commonly used
in modern compiler optimizations.

32.1.3 Dominance Frontiers

Many algorithms involving the notion of control dependence or dominance can be rephrased in terms
of dominance frontiers. A node A is in the dominance frontiers of B iff B dominates a predecessor of A
but B does not strictly-dominate A. We denote this as A ∈ DF (B). The dual notion of post-dominance
frontiers can be defined analogously using the post-dominator tree225.

functor DominanceFrontiers226(Dom : DOMINATOR_TREE) : DOMINANCE_FRONTIERS

The functor DominanceFrontiers can be used to compute all the dominance frontiers of all the nodes
in a graph. It has the following signature.

223file: ir/cdg.sig
224file: ir/cdg.sml
225Control dependence can be defined in terms of post-dominance frontiers.
226file: ir/dominance-frontier.sml
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signature DOMINANCE_FRONTIERS227 = sig

structure Dom : DOMINATOR_TREE

type dominance_frontiers = node_id list array

val DFs : (’n,’e,’g) Dom.dominator_tree -> dominance_frontiers

end

32.1.4 Iterated Dominance Frontiers

Iterated dominance frontiers (denoted as DF+) are defined as the least fixed point of iterating the opera-
tion DF . Formally, define the dominance frontiers on a set S as follows:

DF (S)
as
=

⋃
A∈S

DF (A)

Define iteration of DF , denoted as DFn, as follows:

DF 1(S)
as
= DF (S)

DFn+1(S)
as
= DF (S ∪DFn(S))

The iterated dominance frontiers DF+(S) on a set S are defined as the limit:

DF+(S)
as
= lim

n→∞
DFn(S)

Iterated dominance frontiers of a set S can be computed in timeO(|S|+ |V |+ |E|) using the algorithm
by Sreedhar and Gao [SG95]228.

functor DJGraph229(Dom : DOMINATOR_TREE) : DJ_GRAPH

The functor DJGraph implements this algorithm. It satisfies the signature below:

signature DJ_GRAPH230 = sig

structure Dom : DOMINATOR_TREE

type (’n,’e,’g) dj_graph = (’n,’e,’g) Dom.dominator_tree

val dj_graph : (’n,’e,’g) dj_graph ->

{ DF : node_id -> node_id list,

IDF : node_id -> node_id list,

IDFs : node_id list -> node_id list

}
end

The function dj_graph takes a dominator tree and returns three query methods for computing dom-
inance and iterated dominance frontiers. Method DF computes DF (v) for a single node v. Method IDF

computes theDF+(v), and method IDFs computesDF+(S) when given a set of node ids. The dominator
tree must not be updated while these operations are being performed.

227file: ir/dominance-frontier.sig
228 In practice it is often sub-linear in |V |+ |E|.
229file: ir/djgraph.sml
230file: ir/djgraph.sig
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Sreedhar’s original algorithm is phrased in terms of the DJ-graph, which is a fusion of the dominator
tree with its underlying flowgraph. Our variant operates on the dominator tree and the flowgraph at the
same time, without building an intermediate data structure.

Iterated dominance frontiers are used in many algorithms that deal with the notion of dominance. For
example, our SSA construction algorithm uses iterated dominance frontiers to identify confluent points
in the program where phi-functions are to be placed.

32.1.5 Loop Nesting Tree

A natural loop L in a graph is a maximal strongly connected component such that all nodes in L are
dominated by a single node h, called the loop header. Loops tend to form good optimization candidates
and consequently loop detection is an essential task in a compiler. The functor

functor LoopStructure231

(structure GraphImpl : GRAPH_IMPLEMENTATION

structure Dom : DOMINATOR_TREE

) : LOOP_STRUCTURE

recognizes all natural loops in a graph and built a loop nesting tree that describes the loop nesting
relationship between graphs.

signature LOOP_STRUCTURE232 = sig

structure Dom : DOMINATOR_TREE

datatype (’n,’e,’g) loop =

LOOP of { nesting : int,

header : node_id,

loop_nodes : node_id list,

backedges : ’e edge list,

exits : ’e edge list

}

type (’n,’e,’g) loop_info

type (’n,’e,’g) loop_structure = ((’n,’e,’g) loop,unit, (’n,’e,’g) loop_info) graph

val loop_structure : (’n,’e,’g) Dom.dominator_tree -> (’n,’e,’g) loop_structure

val nesting_level : (’n,’e,’g) loop_structure -> node_id array

val header : (’n,’e,’g) loop_structure -> node_id array

end

Our algorithm computes the loop nesting tree in timeO((|V |+ |E|)α(|V |+ |E|)). Each node in this tree
represents a loop in the flowgraph, except the root of the tree, which represents the entire graph. Given a
flowgraph G, the root of the loop nesting tree is defined to be the sole vertex in #entryG. Other nodes in
the tree are indexed by the loop header node ids.

Loop detection classifies each loop and for each loop L, the following information is obtained:

• An integer nesting. The root of the tree has nesting depth 0. The top level loops have nesting depth
1, etc.

231file: ir/loop-structure.sml
232file: ir/loop-structure.sig
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• The node id of the loop header h.

• A set of loop_nodes. Loop nodes are nodes that are in the strongly connected component L, but
excluding the header h and all nodes that are part of any nested loops. Thus all nodes are uniquely
partitioned in header nodes and loop nodes, and loop nodes are further partitioned into different
sets according to which headers they are immediately nested under.

• A set of backedges. A back-edge is an edge that targets the header h and originates from a loop node
in L.

• A set of loop exits. An exit-edge is an edge that originates from a loop node within L targets a node
outside of L. Note that this set does not include any exit-edges contained in loops nested in L but
target a node out of L.

32.1.6 Static Single Assignment

An SSA construction algorithm based on [CFR+89, BCHS88, SG95] is implemented in the following func-
tor:

functor StaticSingleAssignmentForm233

(Dom : DOMINATOR_TREE) : STATIC_SINGLE_ASSIGNMENT_FORM

SSA-based optimizations in MLRISC are actually implemented on top of a high-level SSA layer de-
scribed in Section 34. So it is not necessary to use this module directly. Nevertheless, there can be situ-
ations in which this module can be specialized in other ways; for example, in the construction of sparse
evaluation graphs.

signature STATIC_SINGLE_ASSIGNMENT_FORM234 = sig

structure Dom : DOMINATOR_TREE

type var = int

type phi = var * var * var list $(* orig def/def/uses *)$

type renamer = {defs : var list, uses: var list} ->

{defs : var list, uses: var list}
type copy = {dst : var list, src: var list} -> unit

val compute_ssa :

(’n,’e,’g) Dom.dominator_tree ->

{ max_var : var,

defs : ’n node -> var list,

is_live : var * int -> bool,

rename_var : var -> var,

rename_stmt : {rename:renamer,copy:copy} -> ’n node -> unit,

insert_phi : {block : ’n node,

in_edges : ’e edge list,

phis : phi list

} -> unit

} -> unit

end

233file: ir/ssa.sml
234file: ir/ssa.sig
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This module defines the function compute_ssa, which constructs an SSA graph. It requires the follow-
ing information from the client:

• A dominator tree of the flowgraph.

• max_var – the maximum variable id (integer) that exists in the flowgraph. All variables are assumed
to be indexed by non-negative integers.

• defs(X) – a function that returns defs(X), i.e. the set of variable names defined in block X. If a
minimal SSA form is desired, this set should include all the definitions inX. If a pruned SSA form is
required, this set should include only the set of names that are live-out in X.

• is_live(v,X) – a function that determines if variable v is live-in into block X. If not, a φ-function
will not be placed inX. For example, to compute the minimal-SSA form, this function should always
return true.

• rename_var(v) – a function that returns a new unique name for variable v.

• rename_stmt – a function of type rename:renamer,copy:copy -> ’n node -> unit where

type renamer = {defs : var list, uses: var list} ->

{defs : var list, uses: var list}
type copy = {dst : var list, src: var list} -> unit

Function rename_stmt is called for each block in the flowgraph in the order of the dominator tree,
and is responsible for renaming all the variables inX by calling the functions renamer or copy. Func-
tion renamer renames all definitions and uses of a statement, while function copy renames of a set
of parallel assignments

• insert_phi(X,es,phis) – a function that inserts a set of φ-definitions phis in blockX, where es is the
list of control flow edges that merge into block X.

32.1.7 IDEFS/IUSE sets

Reif and Tarjan define the following useful notions for computing approximate birth-points for expres-
sions, which in turn can be used to drive other optimizations. Given a node X, let idom(X) denote the
immediate dominator of X. Let def(X) (use(X)) denote all the definitions (uses) in X. Given a path
p ≡ v1 . . . vn, define def(p) (use(p)) as

def(v1 . . . vn) ≡ ∪i∈1...ndef(vi)
use(v1 . . . vn) ≡ ∪i∈1...nuse(vi)

Let P (X) denotes all the paths from idom(X) toX that does not cross idom(X) internally. Then define
idef(X) (iuse(X)) as:

idef(X) ≡
⋃

idom(X)v1...vnX∈P (X)

def(v1 . . . vn)

iuse(X) ≡
⋃

idom(X)v1...vnX∈P (X)

use(v1 . . . vn)

The sets ipostdef(X) and ipostuse(X) are defined analogously using the postdominator tree.
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signature IDEFS235 = sig

type var = int

val compute_idefs :

{def_use : ’n Graph.node -> var list * var list,

cfg : (’n,’e,’g) Graph.graph

} ->

{ idefuse : unit -> (RegSet.regset * RegSet.regset) Array.array,

ipostdefuse : unit -> (RegSet.regset * RegSet.regset) Array.array

}
end

structure IDefs236 : IDEFS

Structure IDefs implements the function comput_idefs for computing the idef , iuse, ipostdef and
ipostuse sets of a control flow graph. It takes as arguments a flowgraph and a function def_use, which
takes a graph node and returns the def/use sets of the node. It returns two functions idefuse and ipostdefuse

which compute the idef/iuse and ipostdef/ipostuse sets. These sets are returned as arrays indexed by
node ids.

235file: ir/idefs2.sig
236file: ir/idefs2.sml
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33 The MLRISC IR

33.1 Introduction

In this section we will describe the MLRISC intermediate representation.

33.1.1 Control Flow Graph

The control flow graph is the main view of the IR. A control flow graph satisfies the following signature:

signature CONTROL_FLOW_GRAPH237 = sig

structure I : INSTRUCTIONS

structure P : PSEUDO_OPS

structure C : CELLS

structure W : FIXED_POINT

sharing I.C = C

definitions
end

The following structures nested within a CFG:

• I : INSTRUCTIONS is the instruction structure.

• P : PSEUDO_OPS is the structure with the definition of pseudo ops.

• C : CELLS is the cells structure describing the register conventions of the architecture.

• W : FIXED_POINT is a structure that contains a fixed point type used in execution frequency anno-
tations.

The type weight below is used in execution frequency annotations:

type weight = W.fixed_point

There are a few different kinds of basic blocks, described by the type block_kind below:

datatype block_kind =

START

| STOP

| FUNCTION_ENTRY

| NORMAL

| HYPERBLOCK

A basic block is defined as the datatype block, defined below:

and data = LABEL of Label.label

| PSEUDO of P.pseudo_op

and block =

237file: IR/mlrisc-cfg.sig



33.1 Introduction 128

BLOCK of

{ id : int,

kind : block_kind,

name : B.name,

freq : weight ref,

data : data list ref,

labels : Label.label list ref,

insns : I.instruction list ref,

annotations : Annotations.annotations ref

}

Edges in a CFG are annotated with the type edge_info, defined below:

and edge_kind = ENTRY

| EXIT

| JUMP

| FALLSTHRU

| BRANCH of bool

| SWITCH of int

| SIDEEXIT of int

and edge_info =

EDGE of { k : edge_kind,

w : weight ref,

a : Annotations.annotations ref

}

Type cfg below defines a control flow graph:

type edge = edge_info edge

type node = block node

datatype info =

INFO of { regmap : C.regmap,

annotations : Annotations.annotations ref,

firstBlock : int ref,

reorder : bool ref

}
type cfg = (block,edge_info,info) graph

33.1.2 Low-level Interface

The following subsection describes the low-level interface to a CFG. These functions should be used with
care since they do not always maintain high-level structural invariants imposed on the representation. In
general, higher level interfaces exist so knowledge of this interface is usually not necessary for customiz-
ing MLRISC.

Various kinds of annotations on basic blocks are defined below:

exception LIVEOUT of C.cellset
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exception CHANGED of unit -> unit

exception CHANGEDONCE of unit -> unit

The annotation LIVEOUT is used record live-out information on an escaping block. The annotations
CHANGED and CHANGEDONCE are used internally for maintaining views on a CFG. These should not be used
directly.

The following are low-level functions for building new basic blocks. The functions newXXX build
empty basic blocks of a specific type. The function defineLabel returns a label to a basic block; and
if one does not exist then a new label will be generated automatically. The functions emit and show_block

are low-level routines for displaying a basic block.

val newBlock : int * B.name -> block

val newStart : int -> block

val newStop : int -> block

val newFunctionEntry : int -> block

val copyBlock : int * block -> block

val defineLabel : block -> Label.label

val emit : C.regmap -> block -> unit

val show_block : C.regmap -> block -> string

Methods for building a CFG are listed as follows:

val cfg : info -> cfg

val new : C.regmap -> cfg

val subgraph : cfg -> cfg

val init : cfg -> unit

val changed : cfg -> unit

val removeEdge : cfg -> edge -> unit

Again, these methods should be used only with care.
The following functions allow the user to extract low-level information from a flowgraph. Function

regmap returns the current register map. Function regmap returns a function that lookups the current
register map. Function liveOut returns liveOut information from a block; it returns the empty cellset if
the block is not an escaping block. Function fallsThruFrom takes a node id v and locates the block u (if
any) that flows into v without going through a branch instruction. Similarly, the function fallsThruTo

takes a node id u and locates the block (if any) that u flows into with going through a branch instruction.
If u falls through to v in any feasible code layout u must preceed v.

val regmap : cfg -> C.regmap

val reglookup : cfg -> C.register -> C.register

val liveOut : block -> C.cellset

val fallsThruFrom : cfg * node_id -> node_id option

val fallsThruTo : cfg * node_id -> node_id option

To support graph viewing of a CFG, the following low-level primitives are provided:

val viewStyle : cfg -> (block,edge_info,info) GraphLayout.style

val viewLayout : cfg -> GraphLayout.layout

val headerText : block -> string

val footerText : block -> string

val subgraphLayout : cfg : cfg, subgraph : cfg -> GraphLayout.layout
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Finally, a miscellany function for control dependence graph building.

val cdgEdge : edge_info -> bool

33.1.3 IR

The MLRISC intermediate representation is a composite view of various compiler data structures, includ-
ing the control flow graph, (post-)dominator trees, control dependence graph, and loop nesting tree. Ba-
sic compiler optimizations in MLRISC operate on this data structure; advance optimizations operate on
more complex representations which use this representation as the base layer.
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Figure 4: The MLRISC IR

This IR provides a few ad-
ditional functionalities:

• Edge frequencies – ex-
ecution frequencies are
maintained on all con-
trol flow edges.

• Extensible annotations
– semantics information
can be represented as
annotations on the graph.

• Multiple facets – Facets
are high-level views that
automatically keep them-
selves up-to-date. Com-
puted facets are cached
and out-of-date facets
are recomputed by de-
mand. The IR defines
a mechanism to attach
multiple facets to the IR.

The signature of the IR is
listed below

signature MLRISC_IR238 = sig

structure I : INSTRUCTIONS

structure CFG : CONTROL_FLOW_GRAPH

structure Dom : DOMINATOR_TREE

structure CDG : CONTROL_DEPENDENCE_GRAPH

structure Loop : LOOP_STRUCTURE

structure Util : CFG_UTIL

sharing Util.CFG = CFG

sharing CFG.I = I

sharing Loop.Dom = CDG.Dom = Dom

238file: IR/mlrisc-ir.sig
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type cfg = CFG.cfg

type IR = CFG.cfg

type dom = (CFG.block,CFG.edge_info,CFG.info) Dom.dominator_tree

type pdom = (CFG.block,CFG.edge_info,CFG.info) Dom.postdominator_tree

type cdg = (CFG.block,CFG.edge_info,CFG.info) CDG.cdg

type loop = (CFG.block,CFG.edge_info,CFG.info) Loop.loop_structure

val dom : IR -> dom

val pdom : IR -> pdom

val cdg : IR -> cdg

val loop : IR -> loop

val changed : IR -> unit

val memo : (IR -> ’facet) -> IR -> ’facet
val addLayout : string -> (IR -> GraphLayout.layout) -> unit

val view : string -> IR -> unit

val views : string list -> IR -> unit

val viewSubgraph : IR -> cfg -> unit

end

The following facets are
predefined: dominator, post-
dominator tree, control de-
pendence graph and loop nest-
ing structure. The functions
dom, pdom, cdg, loop are facet
extraction methods that com-
pute up-to-date views of these facets.

The following protocol is used for facets:

• When the IR is changed, the function changed should be called to signal that all facets attached to
the IR should be updated.

• To add a new facet of type F that is computed by demand, the programmer has to provide a facet
construction function f : IR -> F. Call the function mem to register the new facet. For example, let
val g = memo f. Then the function g can be used to as a new facet extraction function for facet F.

• To register a graph viewing function, call the function addLayout and provide an appropriate graph
layout function. For example, we can say addLayout "F" layoutF to register a graph layout function
for a facet called “F”.

To view an IR, the functions view, views or viewSubgraph can be used. They have the following inter-
pretation:

• view computes a layout for one facet of the IR and displays it. The predefined facets are called
“dom”, “pdom”, “cdg”, “loop.” The IR can be viewed as the facet “cfg.” In addition, there is a layout
named “doms” which displays the dominator tree and the post-dominator tree together, with the
post-dominator inverted.

• views computes a set of facets and displays it together in one single picture.
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• viewSubgraph layouts a subgraph of the IR. This creates a picture with the subgraph highlighted and
embedded in the whole IR.

33.1.4 Building a CFG

There are two basic methods of building a CFG:

• convert a sequence of machine instructions into a CFG through the emitter interface, described
below, and

• convert it from a cluster, which is the basic linearized representation used in the MLRISC system.

The first method requires you to perform instruction selection from a compiler front-end, but allows you
to bypass all other MLRISC phases if desired. The second method allows you to take advantage of various
MLRISC’s instruction selection modules currently available. We describe these methods in this section.

Directly from Instructions Signature CODE_EMITTER below describes an abstract emitter interface for
accepting a linear stream of instructions from a source and perform a sequence of actions based on this
stream239.

signature CODE_EMITTER240 = sig

structure I : INSTRUCTIONS

structure C : CELLS

structure P : PSEUDO_OPS

sharing I.C = C

type emitter =

{ defineLabel : Label.label -> unit,

entryLabel : Label.label -> unit,

exitBlock : C.cellset -> unit,

pseudoOp : P.pseudo_op -> unit,

emitInstr : I.instruction -> unit,

comment : string -> unit,

init : int -> unit,

finish : unit -> unit

}
end

The code emitter interface has the following informal protocol.

239Unlike the signature EMITTER NEW or FLOWGRAPH GEN, it has the advantage that it is not tied into any form of specific flowgraph
representation.

240file: extensions/code-emitter.sig
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init(n) Initializes the emitter and signals that the back-end should allocate space for n bytes of machine code. The number is ignored for non-machine code back-ends.
defineLabel(l) Defines a new label l at the current position.
entryLabel(l) Defines a new entry label l at the current position. An entry label defines an entry point into the current flow graph. Note that multiple entry points are allowed
exitBlock(c) Defines an exit at the current position. The cellset c represents the live-out information
pseudOp(p) Emits an pseudo op p at the current position
emitInstr(i) Emits an instruction i at the current position
blockName(b) Changes the block name to b
comment(msg) Emits a comment msg at the current position
finish Signals that the use of the emitter is finished. The emitter is free to perform its post-processing functions. When this is finished the CFG is built.

The functor ControlFlowGraphGenbelow can be used to create a CFG builder that uses the CODE_EMITTER
interface.

signature CONTROL_FLOW_GRAPH_GEN241 = sig

structure CFG : CONTROL_FLOW_GRAPH

structure Emitter : CODE_EMITTER

sharing Emitter.I = CFG.I

sharing Emitter.P = CFG.P

val emitter : CFG.cfg -> Emitter.emitter

end

functor ControlFlowGraphGen242

(structure CFG : CONTROL_FLOW_GRAPH

structure Emitter : CODE_EMITTER

structure P : INSN_PROPERTIES

sharing CFG.I = Emitter.I = P.I

sharing CFG.P = Emitter.P

sharing CFG.B = Emitter.B

) : CONTROL_FLOW_GRAPH_GEN

Cluster to CFG The core MLRISC system implements many instruction selection front-ends. The result
of an instruction selection module is a linear code layout block called a cluster. The functor Cluster2CFG
below generates a translator that translates a cluster into a CFG:

signature CLUSTER2CFG243 = sig

structure CFG : CONTROL_FLOW_GRAPH

structure F : FLOWGRAPH

sharing CFG.I = F.I

sharing CFG.P = F.P

sharing CFG.B = F.B

val cluster2cfg : F.cluster -> CFG.cfg

end

functor Cluster2CFG244

(structure CFG : CONTROL_FLOW_GRAPH

structure F : FLOWGRAPH

structure P : INSN_PROPERTIES

241file: IR/mlrisc-cfg-gen.sig
242file: IR/mlrisc-cfg-gen.sml
243file: IR/mlrisc-cluster2cfg.sig
244file: IR/mlrisc-cluster2cfg.sml
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sharing CFG.I = F.I = P.I

sharing CFG.P = F.P

sharing CFG.B = F.B

) : CLUSTER2CFG

CFG to Cluster The basic MLRISC system also implements many back-end functions such as register
allocation, assembly output and machine code output. These modules all utilize the cluster representa-
tion. The functor CFG2Cluster245 below generates a translator that converts a CFG into a cluster. With the
previous functor, the CFG and the cluster presentation can be freely inter-converted.

signature CFG2CLUSTER246 = sig

structure CFG : CONTROL_FLOW_GRAPH

structure F : FLOWGRAPH

sharing CFG.I = F.I

sharing CFG.P = F.P

sharing CFG.B = F.B

val cfg2cluster : cfg : CFG.cfg, relayout : bool -> F.cluster

end

functor CFG2Cluster247

(structure CFG : CONTROL_FLOW_GRAPH

structure F : FLOWGRAPH

sharing CFG.I = F.I

sharing CFG.P = F.P

sharing CFG.B = F.B

val patchBranch : instr:CFG.I.instruction, backwards:bool ->

CFG.I.instruction list

) : CFG2CLUSTER

When a CFG originates from a cluster, we try to preserve the same code layout through out all opti-
mizations when possible. The function cfg2cluster takes an optional flag that specifies we should force
the recomputation of the code layout of a control flow graph when translating a CFG back into a cluster.

33.1.5 Basic CFG Transformations

Basic CFG transformations are implemented in the functor CFGUtil. These transformations include split-
ting edges, merging edges, removing unreachable code and tail duplication.

functor CFGUtil248

(structure CFG : CONTROL_FLOW_GRAPH

structure P : INSN_PROPERTIES

sharing P.I = CFG.I

) : CFG_UTIL

The signature of CFGUtil is defined below:

245file: IR/mlrisc-cfg2cluster.sml
246file: IR/mlrisc-cfg2cluster.sig
247file: IR/mlrisc-cfg2cluster.sml
248file: IR/mlrisc-cfg-util.sml
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signature CFG_UTIL249 = sig

structure CFG : CONTROL_FLOW_GRAPH

val updateJumpLabel : CFG.cfg -> node_id -> unit

val mergeEdge : CFG.cfg -> CFG.edge -> bool

val eliminateJump : CFG.cfg -> node_id -> bool

val insertJump : CFG.cfg -> node_id -> bool

val splitEdge : CFG.cfg -> edge : CFG.edge, jump : bool

-> edge : CFG.edge, node : CFG.node

val isMerge : CFG.cfg -> node_id -> bool

val isSplit : CFG.cfg -> node_id -> bool

val hasSideExits : CFG.cfg -> node_id -> bool

val isCriticalEdge : CFG.cfg -> CFG.edge -> bool

val splitAllCriticalEdges : CFG.cfg -> unit

val ceed : CFG.cfg -> node_id * node_id -> bool

val tailDuplicate : CFG.cfg -> { subgraph : CFG.cfg, root : node_id }
-> { nodes : CFG.node list,

edges : CFG.edge list }
val removeUnreachableCode : CFG.cfg -> unit

val mergeAllEdges : CFG.cfg -> unit

end

These functions have the following meanings:

• updateJumpLabel Gu. This function updates the label of the branch instruction in a block u to be
consistent with the control flow edges with source u. This is an nop if the CFG is already consistent.

• mergeEdge Ge. This function merges edge e ≡ u → v in the graph G if possible. This is successful
only if there are no other edges flowing into v and no other edges flowing out from u. It returns true
if the merge operation is successful. If successful, the nodes u and v will be coalesced into the block
u. The jump instruction (if any) in the node u will also be elided.

• eliminateJumpGu. This function eliminate the jump instruction at the end of block u if it is feasible.

• insertJumpGu. This function inserts a jump instruction in block u if it is feasible.

• splitEdge Ge. This function split the control flow edge e, and return a new edge e′ and the new
block u as return values. It addition, it takes as argument a flag jump. If this flag is true, then a jump
instruction is always placed in the split; otherwise, we try to eliminate the jump when feasible.

• isMerge Gu. This function tests whether block u is a merge node. A merge node is a node that has
two or more incoming flow edges.

• isSplit Gu. This function tests whether block u is a split node. A split node is a node that has two
or more outgoing flow edges.

• hasSideExits Gu. This function tests whether a block has side exits G. This assumes that u is a
hyperblock.

• isCriticalEdgeGe. This function tests whether the edge e is a critical edge. The edge e ≡ u→ v is
critical iff there are u is merge node and v is a split node.

249file: IR/mlrisc-cfg-util.sig
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• splitAllCriticalEdgesG. This function goes through the CFG G and splits all critical edges in the
CFG. This can introduce extra jumps and basic blocks in the program.

• mustPreceed G(u, v). This function checks whether two blocks u and v are necessarily adjacent.
Blocks u and v must be adjacent iff u must preceed v in any feasible code layout.

• tailDuplicate.

val tailDuplicate : CFG.cfg -> { subgraph : CFG.cfg, root : node_id }
-> { nodes : CFG.node list,

edges : CFG.edge list }
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Figure 5: Tail-duplication

This function tail-duplicates the region subgraph until it only has a single entry root. Return the
set of new nodes and new edges. The region is represented as a subgraph view of the CFG. Figure 5
illustrates this transformation.

• removeUnreachableCodeG. This function removes all unreachable code from the graph.

• mergeAllEdges G. This function tries to merge all the edges in the flowgraph G. Merging is per-
formed in the non-increasing order of edge frequencies.

33.1.6 Dataflow Analysis

MLRISC provides a simple customizable module for performing iterative dataflow analysis. A dataflow
analyzer has the following signature:
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signature DATAFLOW_ANALYZER250 = sig

structure CFG : CONTROL_FLOW_GRAPH

type dataflow_info

val analyze : CFG.cfg * dataflow_info -> dataflow_info

end

A dataflow problem is described by the signature DATAFLOW_PROBLEM, described below:

signature DATAFLOW_PROBLEM251 = sig

structure CFG : CONTROL_FLOW_GRAPH

type domain

type dataflow_info

val forward : bool

val bot : domain

val == : domain * domain -> bool

val join : domain list -> domain

val prologue : CFG.cfg * dataflow_info ->

CFG.block node ->

{ input : domain,

output : domain,

transfer : domain -> domain

}
val epilogue : CFG.cfg * dataflow_info ->

{ node : CFG.block node,

input : domain,

output : domain

} -> unit

end

This description contains the following items

• type domain is the abstract lattice domain D.

• type dataflow_info is where the dataflow information is stored.

• forward is true iff the dataflow problem is in the forward direction

• bot is the bottom element of D.

• == is the equality function on D.

• join is the least-upper-bound function on D.

• prologue is a user-supplied function that performs pre-processing and setup. For each CFG node
X, this function computes

– input – which is the initial input value of X

– output – which is the initial output value of X

– transfer – which is the transfer function on X.
250file: IR/dataflow.sig
251file: IR/dataflow.sig
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• epilogue is a function that performs post-processing. It visits each node X in the flowgraph and
return the resulting input and output value for X.

To generate a new dataflow analyzer from a dataflow problem, the functor Dataflow can be used:

functor Dataflow252(P : DATAFLOW_PROBLEM) : DATAFLOW_ANALYZER =

33.1.7 Static Branch Prediction

33.1.8 Branch Optimizations

252file: IR/dataflow.sml
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34 SSA Optimizations

All SSA optimization modules satisfy the signature SSA OPTIMIZATION253, which is defined as:

signature SSA_OPTIMIZATION = sig

structure SSA : SSA

val optimize : SSA.ssa -> SSA.ssa

end

The following SSA based scalar optimizations have been implemented in MLRISC.

• Dead code elimination254

• Global value numbering, constant folding, algebraic simplication255

• Global code motion256

• Conditional constant propagation257

• Strength reduction258

253file: SSA/ssa-optimization.sig
254file: SSA/ssa-dead-code-elim.sml
255file: SSA/ssa-gvn.sml
256file: SSA/ssa-gcm.sml
257file: SSA/ssa-cond-const-prop.sml
258file: SSA/ssa-op-str-red.sml
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35 ILP Optimizations

35.1 Introduction

This section is under construction. A new scheduler framework for superscalars that ties into the machine
description language is currently being developed.

35.2 The ILP ToolBox

35.2.1 List Scheduler

35.2.2 Ranking Algorithms

Some more complex ranking algorithms (than say critical path) have been implemented. These are:

• The algorithm of Palem and Simons259 which appeared in TOPLAS ’93. This algorithm computes
the modified deadlines of a set instructions, with precedence, latency, and deadlines constraints.

• The algorithm of Leung, Palem, and Pnueli260 which appeared in PACT ’98. This algorithm com-
putes the modified deadlines of a set of instructions, with precedence, latency, release-times and
deadline constraints.

259file: scheduling/PalemSimons.sig
260file: scheduling/LeungPalemPnueli.sig
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36 Optimizations for VLIW/EPIC Architectures

36.1 Overview

Many newer architectures such as the upcoming IA-64 and the DSPs such as the C6 are VLIW or so called
EPIC machines. These architectures depends on the compiler to extract instruction level parallelism (ILP)
and data level parallelism (DLP).

Optimizations for these architectures include:

• Hyperblock construction

• Predication and predicate analysis

• Hyperblock scheduling

• Modulo scheduling

36.2 Hyperblocks

36.3 Predicate Analysis

36.4 Hyperblock Scheduling

36.5 Modulo Scheduling
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37 Register Allocator

The MLRISC register allocator implements the iterated-coalescing algorithm described in POPL ’96 [George,
Appel]. The details are described in these papers

1. A New MLRISC Register Allocator261

261url: http://cm.bell-labs.com/cm/cs/what/smlnj/compiler-notes/new-ra.ps
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38 The Alpha Back End

38.1 Trap Shadows, Floating Exceptions, and Denormalized Numbers on the DEC
Alpha

By Andrew W. Appel and Lal George, Nov 28, 1995
See section 4.7.5.1 of the Alpha Architecture Reference Manual.
The Alpha has imprecise exceptions, meaning that if a floating point instruction raises an IEEE excep-

tion, the exception may not interrupt the processor until several successive instructions have completed.
ML, on the other hand, may want a ”precise” model of floating point exceptions.

Furthermore, the Alpha hardware does not support denormalized numbers (for “gradual underflow”).
Instead, underflow always rounds to zero. However, each floating operation (add, mult, etc.) has a trap-
ping variant that will raise an exception (imprecisely, of course) on underflow; in that case, the instruction
will produce a zero result AND an exception will occur. In fact, there are several variants of each instruc-
tion; three variants of MULT are:

MULT s1,s2,d truncate denormalized result to zero; no exception

MULT/U s1,s2,d truncate denormalized result to zero; raise UNDERFLOW

MULT/SU s1,s2,d software completion, producing denormalized result

The hardware treats the MULT/U and MULT/SU instructions identically, truncating a denormalized result
to zero and raising the UNDERFLOW exception. But the operating system, on an UNDERFLOW excep-
tion, examines the faulting instruction to see if it’s an /SU form, and if so, recalculates s1*s2, puts the right
answer in d, and continues, all without invoking the user’s signal handler.

Because most machines compute with denormalized numbers in hardware, to maximize portability
of SML programs, we use the MULT/SU form. (and ADD/SU, SUB/SU, etc.) But to use this form successfully,
certain rules have to be followed. Basically, d cannot be the same register as s1 or s2, because the opsys
needs to be able to recalculate the operation using the original contents of s1 and s2, and the MULT/SU
instruction will overwrite d even if it traps.

More generally, we may want to have a sequence of floating-point instructions. The rules for such a
sequence are:

1. The sequence should end with a TRAPB (trap barrier) instruction. (This could be relaxed somewhat,
but certainly a TRAPB would be a good idea sometime before the next branch instruction or update of an
ML reference variable, or any other ML side effect.) 2. No instruction in the sequence should destroy any
operand of itself or of any previous instruction in the sequence. 3. No two instructions in the sequence
should write the same destination register.

We can achieve these conditions by the following trick in the Alpha code generator. Each instruction
in the sequence will write to a different temporary; this is guaranteed by the translation from ML-RISC. At
the beginning of the sequence, we will put a special pseudo-instruction (we call it DEFFREG) that “defines”
the destination register of the arithmetic instruction. If there are K arithmetic instructions in the se-
quence, then we’ll insert K DEFFREG instructions all at the beginning of the sequence. Then, each arithop
will not only “define” its destination temporary but will “use” it as well. When all these instructions are
fed to the liveness analyzer, the resulting interference graph will then have inteference edges satisfying
conditions 2 and 3 above.

Of course, DEFFREG doesn’t actually generate any code. In our model of the Alpha, every instruction
generates exactly 4 bytes of code except the “span-dependent” ones. Therefore, we’ll specify DEFFREG as a
span-dependent instruction whose minimum and maximum sizes are zero.
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At the moment, we do not group arithmetic operations into sequences; that is, each arithop will be
preceded by a single DEFFREG and followed by a TRAPB. To avoid the cost of all those TRAPB’s, we should
improve this when we have time. Warning: Don’t put more than 31 instructions in the sequence, because
they’re all required to write to different destination registers!

What about multiple traps? For example, suppose a sequence of instructions produces an Overflow
and a Divide-by-Zero exception? ML would like to know only about the earliest trap, but the hardware
will report BOTH traps to the operating system. However, as long as the rules above are followed (and
the software-completion versions of the arithmetic instructions are used), the operating system will have
enough information to know which instruction produced the trap. It is very probable that the operating
system will report ONLY the earlier trap to the user process, but I’m not sure.

For a hint about what the operating system is doing in its own trap-handler (with software comple-
tion), see section 6.3.2 of “OpenVMS Alpha Software” (Part II of the Alpha Architecture Manual). This stuff
should apply to Unix (OSF1) as well as VMS.
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39 The PA RISC Back End

No documentation yet.
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40 The Sparc Back End

The Sparc back end can function in two different modes:

Sparc V8 This is V8 instruction set is used. In this mode the processor behaves like a 32-bit processor.
In this mode we assume we have 16 floating point registers numbered %f0, %f2, %f4, ..., %f30.
These are all in IEEE double precision.

Sparc V9 This generates code assuming the V9 instruction set is used. In this mode the processor func-
tions at 64-bit. In this mode the floating point processors can number from %f0, %f2, %f4, ..., %f62.
These are all in IEEE double precision.

New V9 instructions include the 64-bit extended version of multiplications, divisions, shifts, and
load and store.

MULX SMULX DIVX SLLX SRLX SRAX LDX STX

Also, V9 includes conditional moves and more general form of branches.

MOVcc conditional moves on condition code

FMOVcc conditional moves on condition code

MOVR conditional moves on integer condition

BR branch on integer register with prediction

BP branch on integer condition with prediction

40.1 General Setup for V8

The SPARC architecture has 32 general purpose registers (%g0 is always 0) and 32 single precision floating
point registers.

Some Ugliness: double precision floating point registers are register pairs. There are no double pre-
cision moves, negation and absolute values. These require two single precision operations. I’ve created
composite instructions FMOVd, FNEGd and FABSd to stand for these.

All integer arithmetic instructions can optionally set the condition code register. We use this to sim-
plify certain comparisons with zero in the instruction selection process.

Integer multiplication, division and conversion from integer to floating go thru the pseudo instruction
interface, since older sparcs do not implement these instructions in hardware.

In addition, the trap instruction for detecting overflow is a parameter. This allows different trap vectors
to be used.

40.2 General Setup for V9

40.3 Specializing the Sparc Back End
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41 The Intel x86 Back End

No documentation yet.



42 The PowerPC Back End 149

42 The PowerPC Back End

No documentation yet.
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43 The MIPS Back End

No documentation yet.
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44 The TI C6x Back End

No documentation yet.
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45 Annotations

45.1 Overview

A compiler front-end has to be propagate information to the back-end. An optimization phase may have
to leave behind information at various places of the IR so that other phases can reuse such information.
MLRISC uses the annotations mechanism for these functions. Individual instructions, basic blocks, and
flow graph edges, can be attached one or more annotations.

The basic MLRISC system understands many annotations. Some examples are:

COMMENT these can be used to attach comments. If attached to an instruction, the assemblers will
output them as part of their assembly output.

BRANCH PROB these can be attached to a branch instruction to indicate the probability in which is it
taken.

EXECUTION FREQ these can be attached to a basic block to indicate its expected execution frequency

45.2 Details

The primitive annotations datatype is defined to have this signature262. In addition, MLRISC predefined
a few primitive annotations that are recognized by the core system. This signature is MLRISC ANNOTATIONS263.
More detailed documentation can be found in this paper264.

262file: library/annotations.sig
263file: instructions/mlriscAnnotations.sig
264url: http://cm.bell-labs.com/cm/cs/what/smlnj/compiler-notes/annotations.ps
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46 Cells

MLRISC uses the CELLS265 interface to define all readable/writable resources in a machine architecture,
or cells The types defined herein are:

• cellkind – different classes of cells are assigned difference cellkinds. The following cellkinds should
be present

– GP – general purpose registers.

– FP – floating point registers.

– CC – condition code registers.

In addition, the cellkinds MEM and CTRL should also be defined. These are used for representing
memory based data dependence and control dependence.

– MEM – memory

– CTRL – control dependence

• regmap – register map266

• cellset – a cellset represent a set of cells. This type can be used to denote live-in/live-out informa-
tion. Cellsets are implemented as immutable abstract types.

These core definitions are defined in the following signature

signature CELLS BASIS267 =

sig

eqtype cellkind

type cell = int

type regmap = cell Intmap.intmap

exception Cells

val cellkinds : cellkind list

val cellkindToString : cellkind -> string

val firstPseudo : cell

val Reg : cellkind -> int -> cell

val GPReg : int -> cell

val FPReg : int -> cell

val cellRange : cellkind -> low:int, high:int

val newCell : cellkind -> ’a -> cell

val cellKind : cell -> cellkind

val updateCellKind : cell * cellkind -> unit

val numCell : cellkind -> unit -> int

val maxCell : unit -> cell

val newReg : ’a -> cell

val newFreg : ’a -> cell

val newVar : cell -> cell

265file: instructions/cells.sig
266url: regmap.html
267file: instructions/cells.sig
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val regmap : unit -> regmap

val lookup : regmap -> cell -> cell

val reset : unit -> unit

end

• cellkinds – this is a list of all the cellkinds defined in the architecture

• cellkindToString – this function maps a cellkind into its name

• firstPseudo – MLRISC numbered physical resources in the architecture from 0 to firstPseudo-1.
This is the first usable virtual register number.

• Reg – This function maps the ith physical resource of a particular cellkind to its internal encoding
used by MLRISC. Note that all resources in MLRISC are named uniquely.

• GPReg – abbreviation for Reg GP

• FPReg – abbreviation for Reg FP

• cellRange – this returns a range low, highwhen given a cellkind, with denotes the range of physical
resources

• newCell – This function returns a new virtual register of a particular cellkind.

• newReg – abbreviation as newCell GP

• newFreg – abbreviation as newCell FP

• cellKind – When given a cell number, this returns its cellkind. Note that this feature is not enabled
by default.

• updateCellKind – updates the cellkind of a cell.

• numCell – returns the number of virtual cells allocated for one cellkind.

• maxCell – returns the next virtual cell id.

• newVar – given a cell id, return a new cell id of the same cellkind.

• regmap – This function returns a new empty regmap

• lookup – This converts a regmap into a lookup function.

• reset – This function resets all counters associated with all virtual cells.

signature CELLS = sig

include CELLS_BASIS

val GP : cellkind

val FP : cellkind

val CC : cellkind

val MEM : cellkind

val CTRL : cellkind

val toString : cellkind -> cell -> string

val stackptrR : cell
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val asmTmpR : cell

val fasmTmp : cell

val zeroReg : cellkind -> cell option

type cellset

val empty : cellset

val addCell : cellkind -> cell * cellset -> cellset

val rmvCell : cellkind -> cell * cellset -> cellset

val addReg : cell * cellset -> cellset

val rmvReg : cell * cellset -> cellset

val addFreg : cell * cellset -> cellset

val rmvFreg : cell * cellset -> cellset

val getCell : cellkind -> cellset -> cell list

val updateCell : cellkind -> cellset * cell list -> cellset

val cellsetToString : cellset -> string

val cellsetToString’ : (cell -> cell) -> cellset -> string

val cellsetToCells : cellset -> cell list

end

• toString – convert a cell id of a certain cellkind into its assembly name.

• stackptrR – the cell id of the stack pointer register.

• asmTmpR – the cell id of the assembly temporary

• fasmTmp – the cell id of the floating point temporary

• zeroReg – given the cellkind, returns the cell id of the source that always hold the value of zero, if
there is any.

• empty – an empty cellset

• addCell – inserts a cell into a cellset

• rmvCell – remove a cell from a cellset

• addReg – abbreviation for addCell GP

• rmvReg – abbreviation for rmvCell GP

• addFreg – abbreviation for addCell FP

• rmvFreg – abbreviation for rmvCell FP

• getCell – lookup all cells of a particular cellkind from the cellset

• updateCell – replace all cells of a particular cellkind from the cellset.

• cellsetToString – pretty print a cellset

• cellsetToString’ – pretty print a cellset, but first apply a regmap function.

• cellsetToCells – convert a cellset into list form.
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47 Cluster

A cluster represents a compilation unit in linearized form, and contains information about the control
flow, global annotations, block and edge execution frequencies, and live-in/live-out information.

Its signature is:

signature FLOWGRAPH = sig

structure C : CELLS268

structure I : INSTRUCTIONS269

structure P : PSEUDO_OPS270

structure W : FREQ271

sharing I.C = C

datatype block =

PSEUDO of P.pseudo_op

| LABEL of Label.label

| BBLOCK of

{ blknum : int,

freq : W.freq ref,

annotations : Annotations.annotations ref,

liveIn : C.cellset ref,

liveOut : C.cellset ref,

succ : edge list ref,

pred : edge list ref,

insns : I.instruction list ref

}
| ENTRY of

{blknum : int, freq : W.freq ref, succ : edge list ref}
| EXIT of

{blknum : int, freq : W.freq ref, pred : edge list ref}
withtype edge = block * W.freq ref

datatype cluster =

CLUSTER of {
blocks: block list,

entry : block,

exit : block,

regmap: C.regmap,

blkCounter : int ref,

annotations : Annotations.annotations ref

}
end

268url: cells.html
269url: instructions.html
270url: pseudo-ops.html
271url: freq.html
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Clusters are used in span dependency resolution272, delay slot filling273, assembly274, and machine
code275 output, since these phases require the code laid out in linearized form.

272url: span-dep.html
273url: delayslots.html
274url: asm.html
275url: mc.html
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48 Client Defined Constants

48.0.1 Introduction

MLRISC allows the client to inject abstract constants that are resolved only at the end of the compilation
phase into the instruction stream. These constants can be used whereever an integer literal is expected.
Typical usage are stack frame offsets for spill locations which are only known after register allocation,
and garbage collection and exception map which are resolved only when all address calculation are per-
formed.

48.0.2 The Details

Client defined constants should satsify the following signature:

signature CONSTANT276 = sig

type const

val toString : const -> string

val valueOf : const -> int

val hash : const -> word

val == : const * const -> bool

end

The methods are:

toString a pretty printing function
valueOf returns the value of the constant
hash returns the hash value of the constant
== compare two constants for identity

The method toString should be implemented in all cases. The method valueOf is necessary only if
machine code generation is used. The last two methods, hash and == are necessary only if SSA optimiza-
tions are used.

276file: instructions/constant.sig
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49 Client Defined Pseudo Ops

49.1 Introduction

Pseudo ops are client defined instruction stream markers. They can be used to represent assembly direc-
tives. Pseudo ops should satisfy the following signature:

signature PSEUDO_OPS277 = sig

type pseudo_op

val toString : pseudo_op -> string

val emitValue : pOp:pseudo_op, loc:int, emit:Word8.word -> unit -> unit

val sizeOf : pseudo_op * int -> int

val adjustLabels : pseudo_op * int -> bool

end

The method that is required is:

• toString – pretty printing the pseudo in assembly format.

When machine code generation is used, we also have to implement the following methods:

• emitValue – emit value of pseudo op give current location counter and output stream. The value
emitted should respect the endianness of the target machine.

• sizeOf – Size of the pseudo op in bytes given the current location counter The location counter is
provided in case some pseudo ops are dependent on alignment considerations.

• adjustLabels – adjust the value of labels in the pseudo op given the current location counter.

These methods are involved during the span dependence resolution278 phase to determine the size and
layout of the pseudo ops.

277file: instructions/pseudoOps.sig
278url: span-dep.html
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50 Instructions

Instructions in MLRISC are implemented as abstract datatypes and must satisfy the signature INSTRUCTIONS279,
defined as follows:

signature INSTRUCTIONS =

sig

structure C : CELLS280

structure Constant : CONSTANT281

structure LabelExp : LABELEXP282

sharing LabelExp.Constant = Constant

type operand

type ea

type addressing_mode

type instruction

end

Type operand is used to represent ioperands, ea is used to represent effective addresses, type addressing_mode
is used to represent the internal addressing mode used by the architecture. Note that these are all abstract
according to the signature, so the client has complete freedom in choosing the most convenient repre-
sentation for these things.

50.1 Predication

For architectures that have full predication built-in, such as the C6xx or IA-64, the instruction set should
be extended to satisfy the signature:

signature PREDICATED_INSTRUCTIONS283 =

sig

include INSTRUCTIONS

type predicate

end

This basically says that the type that is used to represent a predicate can be implemented however the
client wants. This flexibility is quite important since the predication model may differ substantially from
architecture to architecture.

For example, in the TI C6, there are no seperate predicate register files and integer registers double
as predicate registers, and the predicate true is any non-zero value. Each instruction can be predicated
under a predicate register or its negation. In contrasts, architectures such as IA-64 and HP’s Playdoh in-
corporate separate predicate registers into their architectures. In Playdoh, predicate defining instructions
actually set a pair of complementary predicate registers, and instructions can only be predicated under
the value of a predicate register, not its negation.

279file: instructions/instructions.sig
280url: cells.html
281url: constants.html
282url: labelexp.html
283file: instructions/pred-instructions.sig
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50.2 VLIW

VLIW architectures differ from superscalars in that resource assignments are statically determined at
compile time. We distinguish between two different types of resources, namely functional units and data
paths. The latter type is particularly important for clustered architectures. The following signature is used
to describe VLIW instructions:

signature VLIW INSTRUCTIONS284 =

sig

include INSTRUCTIONS

structure FU : FUNITS285

structure DP : DATAPATHS286

end

The signature FUNITS is used to describe functional unit resources, while the signature DATAPATHS is
used to describe data paths.

50.3 Predicated VLIW

Finally, instructions sets for predicated VLIW/EPIC machines should match the signature

signature PREDICATED_VLIW_INSTRUCTIONS287 =

sig

include VLIW_INSTRUCTIONS

type predicate

end

284file: instructions/vliw-instructions.sig
285file: instructions/funits.sig
286file: instructions/datapaths.sig
287file: instructions/pred-vliw-instructions.sig
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51 Instruction Streams

51.0.1 Overview

An instruction stream is an abstraction used by MLRISC to describe linearized instructions. This abstrac-
tion turns out to fit the function of many MLRISC modules. For example, a phase such as Instruction
Selection288 can be viewed as taking an stream of MLTREE289 statements and return a stream of instruc-
tions290. Similarly, phases such as assembly output291 and machine code generation292 can be seen as
taking a stream of instructions and returning a stream of characters and a stream of bytes.

51.0.2 The Details

An instruction stream satisfy the following abstract signature:

signature INSTRUCTION_STREAM293 =

sig

structure P : PSEUDO_OPS294

datatype (’a,’b,’c,’d,’e,’f) stream =

STREAM of

{ beginCluster: int -> ’b,
endCluster : ’c -> unit,

emit : ’a,
pseudoOp : P.pseudo_op -> unit,

defineLabel : Label.label -> unit,

entryLabel : Label.label -> unit,

comment : string -> unit,

annotation : Annotations.annotation -> unit,

exitBlock : ’d -> unit,

alias : ’e -> unit,

phi : ’f -> unit

}
end

This type is specialized in other modules as such the assembler295, the machine code emitter296, and
the instruction selection modules297.

51.0.3 The protocol

All instruction streams, irrespective of their actual types, follow the following protocol:

288url: instrsel.html
289url: mltree.html
290url: instructions.html
291url: asm.html
292url: mc.html
293file: instructions/stream.sig
294url: pseudo-ops.html
295url: asm.html
296url: mc.html
297url: instrsel.html
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• The method beginCluster should be called at the beginning of the stream to mark the start of a
new compilation unit. The integer passed to this method is the number of bytes in the stream. This
integer is only used for machine code emitter, which uses it to allocate space for the code string.

• The method endCluster should be called when the entire compilation unit has been sent.

• In between these calls, the following methods can be called in any order:

– emit – this method emits an instruction. It takes a regmap298 as argument.

– pseudoOp – this method emits a pseudo op.

– defineLabel – this method defines a local label, i.e. a label that is only referenced within the
same compilation unit.

– entryLabel – this method defines an enternal label that marks an procedure entry, and may be
referenced from other compilation units.

– comment – this emits a comment string

– annotation – this function attaches an annotation to the current basic block.

– exitBlock – this marks the current block as an procedure exit.

298url: regmap.html
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52 Label Expressions

A label expression is a constant expression defined in terms of labels, or user defined constants299. ML-
RISC uses the type labexp to represent label expressions. Label expressions are defined in the structure
LabelExp300.

The datatype labexp has the following definition:

datatype labexp =

LABEL of Label.label

| CONST of Constant.const

| INT of int

| PLUS of labexp * labexp

| MINUS of labexp * labexp

| MULT of labexp * labexp

| DIV of labexp * labexp

| LSHIFT of labexp * word

| RSHIFT of labexp * word

| AND of labexp * word

| OR of labexp * word

In addition, the following functions are defined in labexp:

• valueOf : labexp -> int – Returns the value associated with a label expression

• toString : labexp -> string – Return the pretty printed representation of an expression

• hash : labexp -> word – Returns the hash value of an expression

• == : labexp * labexp -> bool – Tests whether two label expression are lexically identical

The type labexp is depends on client defined constants301 typed. The functor LabelExp is parameter-
ized as follows.

functor LabelExp302(Constant : CONSTANT303)

299url: constants.html
300file: instructions/labelExp.sml
301url: constants.html
302file: instructions/labelExp.sml
303file: instructions/constant.sig
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53 Labels

Labels are used as symbolic names for address. The structure Label304 defines the label datatype. The
following operations are defined on labels:

• newLabel : string -> label – Generate a new label with a given name. If the name is "", a new
name is generated.

• nameOf : label -> string – Returns the name of a label

• id : label -> int – Return the unique id of a label

• reset : unit -> unit – Return the label id counter to 0.

For machine code generation, the following two additional methods are defined.

• addrOf : label -> int – Return the address associated with a label

• setAddr : label * int -> unit – Set the address associated with a label

See also Label Expressions305.

304file: instructions/labels.sml
305url: labelexp.html
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54 Regions

54.0.1 Overview

The MLRISC system uses user defined type called regions to propagate aliasing information to the back-
end. This type is abstract and no constraint is imposed on how it is implemented. The advantage of this
is that the client can optimize the representation of the region information according to the semantics of
the source language. The downside of this freedom is that the client has to implement various modules
to extract information from the regions datatype required by various optimization phases.

For clients that do not want to implement their own regions datatype, there is now a new generic
mechanism, called MLRiscRegions, built on top of the regions concept, for propagating both:

• Aliasing information, and

• Control dependence/anti-control dependence information

Both kinds of information are crucial for extracting parallelism from the target code, and are used in all
optimizations that perform code motion, such as SSA optimizations and all scheduling optimizations.

54.0.2 MLRisc Regions
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55 Regmap

A regmap is a mapping from virtual register to virtual or physical register, and is used by MLRISC register
allocators to represent the current binding of virtual registers. Regmaps are implemented as Intmap306 in
MLRISC, and are defined in the CELLS307 interface.

Regmaps are used in phases such as assembly generation308 and machine code309. MLRISC program
representations such clusters310 and IR311 each contains a global regmap per compilation unit. Represen-
tations such as hyperblock312 may contain its own regmap, which overrides the global regmap.

306file: library/intmap.sml
307url: cells.html
308url: asm.html
309url: mc.html
310url: cluster.html
311url: mlrisc-ir.html
312url: hyperblock.html
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